matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenÖkonomische FunktionenNutzenmaximierung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ökonomische Funktionen" - Nutzenmaximierung
Nutzenmaximierung < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nutzenmaximierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Sa 09.02.2008
Autor: MissChilli

Aufgabe
Ein Haushalt mit der Nutzenfunktion [mm] U(x_{1}, x_{2}) [/mm] = ln [mm] x_{1} [/mm] + ln [mm] x_{2} [/mm] verfügt über ein Einkommen M > 0 und ist auf den Gütermärkten mit den Preisen [mm] p_{1} [/mm] und [mm] p_{2} [/mm] konfrontiert.

(a) Führen Sie die Nutzenmaximierung durch und leiten Sie die Marshall'schen Nachfragefunktionen für die beiden Güter ab.

Da ich glaube, dass es sich hierbei um eine Cobb-Douglas Funktion handelt, habe ich den Lagrange Ansatz aufgestellt:

L [mm] (x_{1},x_{2}, \lambda [/mm] ) = ln [mm] x_{1} [/mm] + ln [mm] x_{2} [/mm] + [mm] \lambda [/mm] (M - [mm] p_{1}x_{1} [/mm] - [mm] p_{2}x_{2}) [/mm]

Bei den Bedingungen erster Ordnung bin ich mir allerdings sehr unsicher:

1) [mm] \bruch{\partial L }{\partial x_{1}} [/mm] = [mm] \bruch{1}{x_{1}} [/mm] - [mm] \lambdap_{1} [/mm] = 0

2) [mm] \bruch{\partial L }{\partial x_{2}} [/mm] = [mm] \bruch{1}{x_{2}} [/mm] - [mm] \lambdap_{2} [/mm] = 0

3) [mm] \bruch{\partial L }{\partial\lambda} [/mm] = M - [mm] p_{1}x_{1} [/mm] - [mm] p_{2}x_{2} [/mm] = 0

aus (1) und (2) ergibt sich dann:

[mm] \bruch{x_{2}}{x_{1}} [/mm] = [mm] \bruch{p_{1}}{p_{2}} [/mm]
also ist:
4)  [mm] x_{2} [/mm] = [mm] x_{1}*\bruch{p_{1}}{p_{2}} [/mm]  (Expansionspfad)

4) eingesetzt in 3) ergibt:

5) [mm] x_{1}^{M} [/mm] = [mm] \bruch{M}{2p_{1}} [/mm]

5) eingesetzt in 4) ergibt:

6)  [mm] x_{2}^{M} [/mm] = [mm] \bruch{M}{2p_{2}} [/mm]


...stimmt das so?? ich bin mir total unsicher, weil es so einfach ging, ich aber schlecht mit logarithmus funktionen klarkomme...danke schon mal!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nutzenmaximierung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 So 10.02.2008
Autor: Analytiker

Hi MissChilli,

erst einmal herzlich [willkommenmr] *smile* !!!

> Da ich glaube, dass es sich hierbei um eine Cobb-Douglas
> Funktion handelt, habe ich den Lagrange Ansatz aufgestellt:

[ok] Ja, denn hier handelt es sich um eine abnehmende Grenzrate der Substitution! Soll heißen: Ist eine Cobb-Douglas-Nutzenfunktion. Ja, über den Lagrange-Ansatz ist das der übliche Weg. ;-)

> L [mm](x_{1},x_{2}, \lambda[/mm] ) = ln [mm]x_{1}[/mm] + ln [mm]x_{2}[/mm] + [mm]\lambda[/mm]
> (M - [mm]p_{1}x_{1}[/mm] - [mm]p_{2}x_{2})[/mm]

[ok]

> 1) [mm]\bruch{\partial L }{\partial x_{1}}[/mm] = [mm]\bruch{1}{x_{1}}[/mm] -
> [mm]\lambdap_{1}[/mm] = 0

[ok]

> 2) [mm]\bruch{\partial L }{\partial x_{2}}[/mm] = [mm]\bruch{1}{x_{2}}[/mm] -
> [mm]\lambdap_{2}[/mm] = 0

[ok]

> 3) [mm]\bruch{\partial L }{\partial\lambda}[/mm] = M - [mm]p_{1}x_{1}[/mm] -
> [mm]p_{2}x_{2}[/mm] = 0

[ok]
  

> [mm]\bruch{x_{2}}{x_{1}}[/mm] = [mm]\bruch{p_{1}}{p_{2}}[/mm]

Was kannst du daraus schließen? Das Preisverhältnis ist gleich...?

>  also ist:
>  4)  [mm]x_{2}[/mm] = [mm]x_{1}*\bruch{p_{1}}{p_{2}}[/mm]  (Expansionspfad)

[ok] Langfristiger Expansionspfad um genau zu sein *zwinker*!

> 5) [mm]x_{1}^{M}[/mm] = [mm]\bruch{M}{2p_{1}}[/mm]

[ok]
  

> 6)  [mm]x_{2}^{M}[/mm] = [mm]\bruch{M}{2p_{2}}[/mm]

[ok]

> ...stimmt das so?? ich bin mir total unsicher, weil es so
> einfach ging, ich aber schlecht mit logarithmus funktionen
> klarkomme...danke schon mal!

Ja, sieht alles soweit gut aus. Sei dir nicht so unsicher, denn die Aufgabe ist eigentlich trivial und nicht komplex, von daher -> gute Arbeit!!!

Liebe Grüße
Analytiker
[lehrer]

PS: Sieht gefährlich nach "Mikro I" aus, wie? ;-)

Bezug
                
Bezug
Nutzenmaximierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 So 10.02.2008
Autor: MissChilli

Hallo Analytiker,

dankeschön :)

ich bin mir deshalb unsicher, weil ich mit logarithmus funktionen nicht gut rechnen kann und ich dort ständig fehler mache. außerdem wurde uns gesagt, dies sei eine schwere funktion...na toll ;)

yup, ist mikro...leider :(

achso, warum ist das eigentlich nur ein langfristiger expansionspfad...wie wär denn der kurzfristige? und was bedeutet das genau?

vielen dank noch mal, bin froh, dass es stimmt!
LG
MissChilli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]