matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und DifferenzierenNumerische Approximation Int.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrieren und Differenzieren" - Numerische Approximation Int.
Numerische Approximation Int. < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Numerische Approximation Int.: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:13 Di 24.03.2009
Autor: Finn84

Aufgabe
Konstante C mit numerischer Approximation des Integrals bestimmen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.(nur hier noch im Themengebiet: Interpolation und Approximation

Die Formel ist:


wobei p(x) die nicht näher definierten  Wahrscheinlichkeiten in zeitkontinuierlichen Zuständen beschreibt.

Die allgemeine Funktion:


wobei R der risikolose Zinssatz und l(x)=a-bx der pricing kernel ist.
kann z.B. -1 sein und a = 1 -  ; b=

Ich tue mich nun schwer damit die numerische Approximation durchzuführen, da ich p(x) nicht kenne (weiß aber auch nicht ob diese wichtig für die Integrationsannäherung ist).
Außerdem kann ich die entsprechenden Verfahren noch nicht wirklich Umsetzen. Ich möchte noch hinzfügen, dass für p(x) im allgemeinen eine Normalverteilung angenommen wird.

        
Bezug
Numerische Approximation Int.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Di 24.03.2009
Autor: fred97


> Konstante C mit numerischer Approximation des Integrals
> bestimmen
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.(nur hier noch im Themengebiet:
> Interpolation und Approximation
>  
> Die Formel ist:

Ja wo ist sie denn ????



>
>
> wobei p(x) die nicht näher definierten  
> Wahrscheinlichkeiten in zeitkontinuierlichen Zuständen
> beschreibt.
>
> Die allgemeine Funktion:
>

Wo ? Wo ?

FRED

>
> wobei R der risikolose Zinssatz und l(x)=a-bx der pricing
> kernel ist.
> kann z.B. -1 sein und a = 1 -  ; b=
>
> Ich tue mich nun schwer damit die numerische Approximation
> durchzuführen, da ich p(x) nicht kenne (weiß aber auch
> nicht ob diese wichtig für die Integrationsannäherung ist).
> Außerdem kann ich die entsprechenden Verfahren noch nicht
> wirklich Umsetzen. Ich möchte noch hinzfügen, dass für p(x)
> im allgemeinen eine Normalverteilung angenommen wird.


Bezug
                
Bezug
Numerische Approximation Int.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:59 Di 24.03.2009
Autor: Finn84

Die ist wohl beim kopieren verloren gegangen. War mir nicht sicher in welches Themengebiet die Frage gehört. Deswegen hab ich sie auch bei Approximation mit eingestellt, das ist sie vollständig

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]