matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikNumerische 2. ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Numerik" - Numerische 2. ableitung
Numerische 2. ableitung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Numerische 2. ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Fr 22.06.2007
Autor: Hexe

Aufgabe
[mm] f''(x)=\bruch{1}{dx^2}(f(x_{n+1})-2f(x_{n})+f(x_{n-1})) [/mm]

So dass man mit dieser Formel die zweite ableitung nähern kann, leuchtet mir ein. Die Frage ist jetzt, was mache ich wenn x=t ist die Formel also zeitabhänhig ist. Kann ich die zweite Ableitung auch berechnen ohne in die Zukunft sehen zu müssen?

        
Bezug
Numerische 2. ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Fr 22.06.2007
Autor: leduart

Hallo
die Frage ist für mich unverständlich, jede Funktion f(t), t Zeit, beschreibt doch etwas zeitliches. t=0 als "jetzt" zu interpretieren ist völlig willkürlich. es ist z. Bsp die Zeit, in dem ein Experiment angefangen hat (auch wenn das vor hundert Jahren war.
Also etwa Galilei liess zur Zeit t=0 einen Stein vom Turm in Pisa fallen, wann kam er unten auf? ist ne legale Frage.
Genau wie du den x=0 pkt einer Achse irgendwohin legen kannst, und das NICHT die linke untere Ecke deines Papiers sein muss!
Gruss leduart

Bezug
                
Bezug
Numerische 2. ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Fr 22.06.2007
Autor: Hexe

Ok dann hab ich mich undeutlich augedrückt meine Frage ist einfach nur.
Angemommen ich kenne alle Werte einer Funktion f(x) für alle [mm] x\le x_n [/mm] und will nun am Punkt [mm] x_n [/mm] die zweite Ableitung numerisch bestimmen. Meine Frage ist, gibt es eine Formel mit der das möglich ist. Die Funktion soll übrigens beliebig differentierbar sein.

Bezug
                        
Bezug
Numerische 2. ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Fr 22.06.2007
Autor: felixf

Hallo!

> Ok dann hab ich mich undeutlich augedrückt meine Frage ist
> einfach nur.
> Angemommen ich kenne alle Werte einer Funktion f(x) für
> alle [mm]x\le x_n[/mm] und will nun am Punkt [mm]x_n[/mm] die zweite
> Ableitung numerisch bestimmen. Meine Frage ist, gibt es
> eine Formel mit der das möglich ist. Die Funktion soll
> übrigens beliebig differentierbar sein.

Also irgendeine Formel kann man natuerlich finden: wenn man weiss, dass die Funktion diffbar ist, kann man die Ableitung durch Grenzwertbildung von Links berechnen.

Eine Moeglichkeit waer: nach Taylor ist ja $f(x + h) = f(x) + h f'(x) + [mm] \frac{1}{2} h^2 [/mm] f''(x) + [mm] O(h^3)$. [/mm] Umstellen liefert $f''(x) = 2 [mm] \cdot \frac{f(x + h) - f(x) - f'(x) h}{h^2} [/mm] + O(h)$. Wenn du also eine gute Approximation fuer [mm] $\frac{f'(x) h}{h^2} [/mm] = [mm] \frac{f'(x)}{h}$ [/mm] hast (also irgendetwas in $O(h)$), kannst du da durch Einsetzen eines negativen $h$ eine Formel fuer $f''(x)$ bekommen, welches nur $f(x)$, $f'(x)$ und $f(x + h)$ (mit $x + h < x$) verwendet.

Ob die Formel numerisch allerdings gut geeignet ist, das ist wie schon gesagt ne ganz andere Frage... :)

LG Felix


Bezug
                                
Bezug
Numerische 2. ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:43 Mo 25.06.2007
Autor: Hexe

Vielen Dank, das war genau was ich gesucht habe.


Bezug
        
Bezug
Numerische 2. ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Fr 22.06.2007
Autor: mathemaduenn

Hallo Hexe,
So wie ich das verstanden habe sind sogenannte "Backward Differentiation Formulas" das Stichwort nach dem du schauen solltest. (siehe []BDF-Verfahren)
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]