matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikNumerik
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - Numerik
Numerik < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Numerik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:02 Mo 26.03.2012
Autor: xPae

Aufgabe
Für einen absoluten und einen relativen Fehler von höchstens 5×10-5 wird je
ein möglichst geringstelliger Näherungswert [mm] x_{1} [/mm] von x = [mm] \wurzel{3} [/mm] =1,7320508K gesucht.
Begründen Sie Ihre Ergebnisse.

Guten Morgen,

hab leider sonst keine passende Kategorie gefunden.
Die Aufgabe verwirrt mich aus dem Grund, dass dort der möglichst geringstellige Näherungswert gesucht wird.

habe gerechnet:

[mm] x_{1-}=(\wurzel{3}-5x10-5) [/mm] =   1.732000
[mm] x_{1+}=(\wurzel{3}+5x10-5) [/mm] = 1.7321008

Bedeutet das jetzt hier, dass ich bei [mm] x_{1-} [/mm] einfach 1,732 schreiben soll. Ich halte die Schreibweise für falsch, da ich somit meine Genauigkeit verliere. (Auf 5 Stellen genau)

Für den relativen Fehler würde ich äquivalent vorgehen. Was sagt ihr Dazu?

Gruß
xpae

        
Bezug
Numerik: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Di 27.03.2012
Autor: chrisno

Hallo xPae,

mit der Wahl des Forums hast Du Deinen Beitrag so positioniert, dass ich den nie für mich interessant gefunden hätte. Auch aus dem Titel habe ich keine Idee bekommen, was tatsächlich gefragt wird.

>  
> [mm]x_{1-}=(\wurzel{3}-5x10-5)[/mm] =   1.732000
> [mm]x_{1+}=(\wurzel{3}+5x10-5)[/mm] = 1.7321008
>  

[mm]x_{1-}=(\wurzel{3}-5 \cdot 10^{-5})[/mm] =   1.7320008
[mm]x_{1+}=(\wurzel{3}+5 \cdot 10^{-5})[/mm] =   1.7321008

Ich schlage vor:
[mm] $\wurzel{3} [/mm] = $   1,7320508
$5 [mm] \cdot 10^{-5} [/mm] = $0,00005
Das heißt, dass mit 1,7321 die Abweichung 0,0000492 beträgt, also gerade noch im erlaubten Bereich liegt.

Beim relativen Fehler würde ich genau so vorgehen, bloß eben zuerst ausrechnen, wie viel [mm] $\wurzel{3} \cdot [/mm] 5 [mm] \cdot 10^{-5}$ [/mm] ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]