matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenNulstellenbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Nulstellenbestimmung
Nulstellenbestimmung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nulstellenbestimmung: PQ Formel bei 3 NST
Status: (Frage) beantwortet Status 
Datum: 18:38 Fr 31.10.2008
Autor: blizzz777

Hallo,

ich brauche einen Ratschlag, wie ich die NST einer Funktion bsp. Weise
3. Grades mit Hilfe der pq-Formel berechne, wenn ich x nicht ausklammern kann!

Bsp: f(x)= [mm] 3x^3-5x^2-2x+6 [/mm]

wie besimme ich nun die Nullstellen, da ja max. 3 auftauchen können?!?
die Formel ist ja nur anwendbar bei einer quadratischen funktion!oder?

lg, Jonas

        
Bezug
Nulstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Fr 31.10.2008
Autor: schachuzipus

Hallo Jonas,


> Hallo,
>  
> ich brauche einen Ratschlag, wie ich die NST einer Funktion
> bsp. Weise
>  3. Grades mit Hilfe der pq-Formel berechne, wenn ich x
> nicht ausklammern kann!
>  
> Bsp: f(x)= [mm]3x^3-5x^2-2x+6[/mm]
>  
> wie besimme ich nun die Nullstellen, da ja max. 3
> auftauchen können?!?
>  die Formel ist ja nur anwendbar bei einer quadratischen
> funktion!oder?

Wenn du mit "die" Formel die p/q-Formel meinst, dann ja ;-)

Es gibt auch eine Formel für kubische Gleichungen, die sich Formel von Cardano nennt, aber die ist recht kompliziert (für Gleichungen 4ten Grades gibt's obendrein noch die Formel von Ferrari - alles von höherem Grad kann man nicht in allg. Formeln fassen)

Bei diesen Aufgaben ist das Raten einer Nullstelle ein patentes Verfahren, wenn es nämlich eine ganzzahlige NST gibt, so ist diese ganzzahliger Teiler des Absolutgliedes (also desjenigen ohne x)

Schaue dir also hier mal die Teiler von 6 an, das sind [mm] $\pm1, \pm2, \pm3, \pm6$ [/mm]

Wenn du darunter eine NST [mm] $x_0$ [/mm] findest, erhältst du mittels Polynomdivision [mm] $f(x):(x-x_0)=q(x)$, [/mm] also [mm] $f(x)=(x-x_0)\cdot{}q(x)$ [/mm] ein "neues" Polynom q, das einen Grad weniger hat als f, also vom Grad 2 ist, so dass du es mit der p/q-Formel oder den dir sonst noch bekannten Methoden für quadratische Gleichungen verarzten kannst

Falls du allerdings keine ganzzahlige NST findest, hilft dir wohl nur ein Näherungsverfahren - zB. das Newtonverfahren - weiter.

Schulaufgaben sind aber (eigentlich) durchweg so gestrickt, dass man schnell eine NST erraten kann und dann wie oben beschrieben weiter machen kann - so auch hier ...

>  
> lg, Jonas


LG

schachuzipus

Bezug
        
Bezug
Nulstellenbestimmung: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Fr 31.10.2008
Autor: babak5786

Du kannst die Funktion mit der Polynomdivision in eine Funktion 2. grades bekommen und dann normal mit der p.q Formel weiter machen

lg

Bezug
                
Bezug
Nulstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:06 Sa 01.11.2008
Autor: blizzz777

danke vielmals:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]