matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNullteiler formale Potenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Nullteiler formale Potenzreihe
Nullteiler formale Potenzreihe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullteiler formale Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Mo 11.06.2012
Autor: r2d2

Aufgabe
Zu zeigen: Ist R ein Integritätsbereich, so auch [mm]R[[x]][/mm]  (Ring der formalen Potenzreihen)

Hallo,

ich bin gerade dabei die Nullteilerfreiheit zu zeigen (dass [mm]R[[x]][/mm] ein komm. RIng mit Einselement ist, habe ich bereits hinter mir).

Mir erscheint es auch schlüssig, dass das Produkt von [mm]f(x)\not=0, g(x)\not=0; f,g\in R[[x]][/mm] ungleich Null sein muss, aber richtig sauber finde ich meine Argumentation nicht...

Das Produkt sieht folgendermaßen aus:
[mm]f(x):= \summe_{n=0}^{\infty} a_n *x^n [/mm] mit [mm] \exists a_s \not= 0[/mm]
[mm]g(x):= \summe_{n=0}^{\infty} b_n *x^n [/mm] mit [mm] \exists b_t \not= 0[/mm]

[mm]f(x)*g(x)=\summe_{n=0}^{\infty} (\summe_{k=0}^{n} a_k * b_{n-k} ) x^n [/mm]

In dieser Summe kommen alle Kombinationen von [mm] a_k , b_l k,l \in \IN [/mm] vor, also auch [mm] a_s * b_t \not=0 [/mm]

Ich habe (nachdem ich obigen Beweis formuliert habe) entdeckt, dass dieser für R[x] (den Polynomring in x über R), also für endliche Summen, gilt.

Was muss ich bei einer unendlichen Summe noch beachten?
Ich denke mal, dass die unendlichen Summen nicht so einfach handhabbar sind, weil ich ja nicht aus endlich viele Summanden einen herausgreifen kann..
Ruft das nach dem Auswahlaxiom?

Liebe Grüße

PS: Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Nullteiler formale Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Di 12.06.2012
Autor: hippias

Hallo R2,
mein Tip sei $s$ der kleinste Index mit [mm] $a_{s}\neq [/mm] 0$ und $t$ der kleinste Index mit [mm] $b_{t}\neq [/mm] 0$. Betrachte im Produkt $fg$ nun den Koeffizienten bei [mm] $x^{s+t}$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]