matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitNullstellensatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Nullstellensatz
Nullstellensatz < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Di 05.02.2008
Autor: abi2007LK

Hallo,

Aufgabe: Zeigen Sie, dass die Gleichung tan x = [mm] \frac{3}{2}x [/mm] genau eine Lösung L [mm] \in (\frac{\pi}{4}, [/mm] 1) besitzt.

Mein Versuch:

Ich zeige, zunächst, dass die Gleichung mindestens eine Lösung hat. Dann möchte ich zeigen, dass sie genau eine Lösung hat. Also:

Jede Nullstelle von f(x) = tan x - [mm] \frac{3}{2}x [/mm] ist eine Lösung der Gleichung.

[mm] tan(\frac{\pi}{4}) [/mm] = 1 und [mm] \frac{3}{2}x [/mm] mit x = [mm] \frac{\pi}{4} [/mm] ergibt: [mm] \frac{3\pi}{8} [/mm]

[mm] \Rightarrow tan(\frac{\pi}{4}) [/mm] = 1 < [mm] \frac{3\pi}{8} \Rightarrow f(\frac{\pi}{4}) [/mm] < 0

tan(1) [mm] \approx [/mm] 1.55741 (Taschenrechner) und [mm] \frac{3}{2}x [/mm] mit x = 1 ergibt: [mm] \frac{3}{2} [/mm]

[mm] \Rightarrow [/mm] tan(1) [mm] \approx [/mm] 1.55741 > [mm] \frac{3}{2} \Rightarrow [/mm] f(1) > 0

Da [mm] f(\frac{\pi}{4}) [/mm] < 0 < f(1) folgt mit dem Nullstellensatz: [mm] \exists [/mm] c [mm] \in (\frac{\pi}{4}, [/mm] 1) : f(c) = 0. Damit wurde gezeigt, dass es mind. eine Lösung gibt. Stimmt das soweit?

Nun muss ich noch zeigen, dass es genau eine Lösung gibt und genau damit habe ich Probleme. Ich versuchs mal:

Da tan x in [mm] (\frac{\pi}{4}, [/mm] 1) steng monoton wächst und [mm] \frac{3}{2}x [/mm] auch steng monoton wächst folgt, dass f(x) auf [mm] (\frac{\pi}{4}, [/mm] 1) injektiv ist, was bedeutet, dass es nur eine Lösung gibt. Das kommt mir sehr komisch vor... Hilfe :)

        
Bezug
Nullstellensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Di 05.02.2008
Autor: leduart

Hallo
Der erste Teil ist richtig.
Der zweite Teil nicht: zeichne mal ne aufsteigende wellige Linie als Graph einer fkt, also monoton steigend, aber mal mehr, mal weniger. die kannst du mit ner Geraden schneiden und viele Schnittstellen kriegen.
Zeig dass f(x) selbst monoton steigend ist in dem Gebiet (Ableitung) dann kann sie wirklich nur eine nullstelle haben (Mittelwertsatz)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]