matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenNullstellen von Ganzrationalen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Nullstellen von Ganzrationalen
Nullstellen von Ganzrationalen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen von Ganzrationalen: Rechnung kontrollieren
Status: (Frage) beantwortet Status 
Datum: 16:43 Mi 02.03.2011
Autor: bubblegun

Hi ,
könnt ihr mal überprüfen , ob meine Rechnung richtig ist, bitte.
Berechnen sie die nullstelle der funktion und zerlegen sie die terme in linearfaktoren.Untersuchen sie das verhalten von f für x in + unendlich oder - unendlich.

a)
[mm] f(x)=x^3-x^2-2x [/mm]

[mm] 0=x^3-x^2-2x [/mm] Ausklammer
[mm] 0=x(x^2-x^1-2) [/mm] Pq- Formel
x1=2.1
x2=-1.1

b)
[mm] f(x)=-x^3+2x^2+x-2 [/mm]

Da bitte ich um Hilfe!

c)
[mm] 0=-x^4+5x^2-4 [/mm]   Ausklammern von [mm] x^2 [/mm]
[mm] 0=(-1x^2+5x-4)x^2 [/mm]    Dividieren durch -1
[mm] 0=(1x^2-5x+4)x^2 [/mm]     Pq-formel
5/2 +- wurzel aus [mm] (5/2)^2 [/mm] -4
2.5 +- wurzel aus 6.25
2.5 +- 2.25
x1(5/0)
x2(0/0)
Die Funktion ist Achsensymmetrisch ,wobei die parabel nach unten geöffnet ist.


d)
[mm] 0=1/12x^4-1/6^3-1x^2 [/mm]  Ausklammern von [mm] x^2 [/mm]
[mm] 0=(1/12x^2-1/6x-1)x^2 [/mm] Dividieren durch 1/12
[mm] 0=(x^2-2x-12)x^2 [/mm]      Pq-formel
x1(4.6/0)
x2(-2.6/0)
Die funktion ist Achsensymmetrisch

Ich hoffe, dass ihr könnt mir helfen, denn ich schreibe eine Arbeit darüber.






        
Bezug
Nullstellen von Ganzrationalen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Mi 02.03.2011
Autor: fred97


> Hi ,
>  könnt ihr mal überprüfen , ob meine Rechnung richtig
> ist.

Ich sehe keine Rechnungen !!


>  Berechnen sie die nullstelle der funktion


Ich sehe keine Funktion !


FRED

>  und zerlegen sie
> die terme in linearfaktoren.Untersuchen sie das verhalten
> von f für x java​script:x();


Bezug
        
Bezug
Nullstellen von Ganzrationalen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:19 Mi 02.03.2011
Autor: bubblegun

Nun, eigentlich rechne ich die Aufgaben immer auf diese Weise.
Die Pq-formel habe ich jetzt nicht ausführlich angewand aber ich glaube , dass man mir das verzeihen kann.

Bezug
        
Bezug
Nullstellen von Ganzrationalen: zu Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 17:26 Mi 02.03.2011
Autor: Loddar

Hallo bubblegun!


>  [mm]f(x)=x^3-x^2-2x[/mm]
>  
> [mm]0=x^3-x^2-2x[/mm] Ausklammer
>  [mm]0=x(x^2-x^1-2)[/mm] Pq- Formel
>  x1=2.1
>  x2=-1.1

[notok] Nochmal mit der p/q-Formel nachrechnen.

Wo ist die 3. Nullstelle?


Gruß
Loddar


Bezug
        
Bezug
Nullstellen von Ganzrationalen: zu Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 17:27 Mi 02.03.2011
Autor: Loddar

Hallo!


> b)
>  [mm]f(x)=-x^3+2x^2+x-2[/mm]
>  
> Da bitte ich um Hilfe!

Hier musst Du durch Probieren eine Nullstelle herausfinden und anschließend eine MBPolynomdivision durchführen.


Gruß
Loddar


Bezug
        
Bezug
Nullstellen von Ganzrationalen: zu Aufgabe c.)
Status: (Antwort) fertig Status 
Datum: 17:30 Mi 02.03.2011
Autor: Loddar

Hallo!


> c)
>  [mm]0=-x^4+5x^2-4[/mm]   Ausklammern von [mm]x^2[/mm]
>  [mm]0=(-1x^2+5x-4)x^2[/mm]

[notok] Huu, was für ein Bock! Wie willst Du denn bei dem letzten Term (vernünftig) [mm] $x^2$ [/mm] ausklammern.

Wende die Substitution $u \ := \ [mm] x^2$ [/mm] an.


>  Die Funktion ist Achsensymmetrisch ,wobei die parabel nach
> unten geöffnet ist.

[ok]


Gruß
Loddar


Bezug
        
Bezug
Nullstellen von Ganzrationalen: zu Aufgabe d.)
Status: (Antwort) fertig Status 
Datum: 17:32 Mi 02.03.2011
Autor: Loddar

Hallo!


> d)
>  [mm]0=1/12x^4-1/6^3-1x^2[/mm]  Ausklammern von [mm]x^2[/mm]
>  [mm]0=(1/12x^2-1/6x-1)x^2[/mm] Dividieren durch 1/12
>  [mm]0=(x^2-2x-12)x^2[/mm]      Pq-formel

[ok]


>  x1(4.6/0)
>  x2(-2.6/0)

[ok] Besser ungerundete Werte schreiben!

Was ist mit den anderen beiden Nullstellen?


>  Die funktion ist Achsensymmetrisch

[notok] Nein, wie kommst Du darauf?


Gruß
Loddar


Bezug
                
Bezug
Nullstellen von Ganzrationalen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Mi 02.03.2011
Autor: bubblegun

Ich danke dir sehr für deine Hilfe und deine Bemühungen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]