Nullstellen elmagn. Welle < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Ein würfelförmiges Zimmer von 3m Kantenlänge werde von einer ebenen linear polarisierten elektromagnetischen Welle der Frequenz 300 Megahertz durchlaufen. Die Richtung des Wellenzahlvektors sei senkrecht zu einer der nteren Zimmerkanten und bilde mit dem Fußboden einen Winkel von 45Grad. Wieviele Nullstellen hat die Feldstärke innerhalb des Zimmers auf einer Geraden auf dem Fußboden senkrecht zur oben erwähnten Zimmerkante? |
Hallo,
ich habe schon folgende Überlegungen gemacht:
Es gilt ja für die Feldstärke:
[mm] \vec{E}(t,\vec{r}) [/mm] = [mm] \vec{E_{0}}(\vec{k})cos(\vec{k}\vec{r}-\omega t+\phi)
[/mm]
Man kann das Problem ja nun auf ein zweidimensionales Problem reduzieren. Ausserdem kann man k bestimmen, denn [mm] |\vec{k}|=\bruch{2\pi}{\lambda}=\bruch{2f\pi}{c} [/mm] und somit sind die beiden Komponenten von k dieser Wert durch [mm] \sqrt{2}. [/mm] Vom Vektor [mm] \vec{r} [/mm] ist eine Komponente 0.
Mein Problem ist jetzt die festlegung von t und [mm] \vec{r}.
[/mm]
Letztendlich muss ich ja [mm] \vec{E} [/mm] dann nur noch 0 setzen und das Argument des Cosinus durch [mm] \pi [/mm] Teilen um die Anzahl der Nullstellen herauszubekommen. Nur was mache ich mit t bzw. [mm] \vec{r} [/mm] ?
Danke schonmal
mfg
Berndte
|
|
|
|
Hallo!
Generell kannst du erstmal [mm] \omega*t [/mm] und [mm] \phi [/mm] weg lassen, uns erstmal nur einen Schnappschuß des Szenarios betrachten.
Dann hast du schon gesagt, wie groß |k| ist, du braucht hier k aber als Vektor. k ist nämlich auch die Ausbreitungsrichtung der Welle. Also, bastle dir aus den Angaben zur Richtung einen Vektor, und gebe ihm die von dir bereits angegebene Länge.
So ähnlich mußt du mit r verfahren, nur ist das nicht die Ausbreitungsrichtung, sondern die Strecke, entlang derer du die Feldstärke beobachten willst [mm] (\vec{r}=\vec{0}...\vec{r'})
[/mm]
Der COS bekommt als Argument also Werte von 0 bis [mm] \vec{k}*\vec{r}. [/mm] Wieviele Nullstellen sind in diesem Intervall vorhanden?
Jetzt kannst du dir zudem überlegen, ob es evtl eine NST weniger oder mehr geben kann, wenn du das Intervall noch etwas verschiebst, denn z.B. das INtervall [mm] [0;\pi] [/mm] hat genau eine NST. Das INtervall [1/2 [mm] \pi;3/2 \pi] [/mm] hat aber zwei NST, ist aber genauso lang.
Wenn sowas passiert heißt das, daß die Welle zeitweise unterschiedlich viele NST hat (das käme denn von dem [mm] \omega*t)
[/mm]
|
|
|
|
|
Hallo,
danke!
Dann hab ich also:
[mm] \vec{k} [/mm] = [mm] \vektor{\bruch{2f\pi}{\sqrt{2}c} \\ \bruch{2f\pi}{\sqrt{2}c}}
[/mm]
[mm] \vec{r} [/mm] = [mm] \vektor{3m \\ 0}
[/mm]
[mm] \vec{r}\cdot{}\vec{k} [/mm] = [mm] \bruch{2f\pi*3m}{\sqrt{2}c} [/mm] = [mm] \bruch{2*300.000.000\bruch{1}{s}*\pi*3m}{\sqrt{2}*300.000.000\bruch{m}{s}}=4,2426*\pi
[/mm]
Dies wird noch durch [mm] \pi [/mm] geteilt, dann habe ich hoffentlich die Zahl der Nullstellen (nämlich 4). Es gibt auch zeitweilig keine Nullstelle mehr, da dafür die Zahl ganzzahlig sein müsste (oder?).
Ich hoffe das Ergebnis ist so richtig, über ein kurzes Feedback würde ich mich freuen.
mfg
Berndte
|
|
|
|