matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraNullstellen bei Gl. 4. Grades
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Nullstellen bei Gl. 4. Grades
Nullstellen bei Gl. 4. Grades < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen bei Gl. 4. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Do 19.10.2006
Autor: Kati

Aufgabe
Seien p, q, r [mm] \in \IC [/mm] und f(x) = [mm] x^{4} [/mm] +p [mm] x^{2} [/mm] + qx +r [mm] \in \IC [/mm] [x] . Wir setzen a = p/2, b=-r/4 + [mm] p^{2}/16, [/mm] c = - [mm] q^{2}/64 [/mm] sowie g(x) [mm] =x^{3} [/mm] +a [mm] x^{2} [/mm] + bx +c
Zeigen Sie: Wenn u, v, w [mm] \in \IC [/mm] so gewählt sind, dass uvw=-q/8 gilt und g(x) =(x - [mm] u^{2}) [/mm] (x - [mm] v^{2})(x [/mm] - [mm] w^{2}), [/mm] dann ist u+v+w eine Nullstelle von f(x)
Hinweis: Es  gilt [mm] (u+v+w)^{2} [/mm] = [mm] u^{2} +v^{2}+w^{2} [/mm] +2(uv+uw+vw) und [mm] (u+v+w)^{4} [/mm] = [mm] ((u+v+w)^{2})^{2} [/mm]

Ich habe diese Frage noch in keinem internetforum gestellt.
hallo.
ich denke dass das gar nicht so schwer ist nur irgendwie fehlt mir ein ansatz. ich hab schon hin und her gerechnet nur komm irgendwie auf nichts hilfreiches. kann mir hier mal irgendjemand sagen wie ich so anfangen könnte.

lg kati

        
Bezug
Nullstellen bei Gl. 4. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Do 19.10.2006
Autor: angela.h.b.


> Seien p, q, r [mm]\in \IC[/mm] und f(x) = [mm]x^{4}[/mm] +p [mm]x^{2}[/mm] + qx +r [mm]\in \IC[/mm]
> [x] . Wir setzen a = p/2, b=-r/4 + [mm]p^{2}/16,[/mm] c = - [mm]q^{2}/64[/mm]
> sowie g(x) [mm]=x^{3}[/mm] +a [mm]x^{2}[/mm] + bx +c
> Zeigen Sie: Wenn u, v, w [mm]\in \IC[/mm] so gewählt sind, dass
> uvw=-q/8 gilt und g(x) =(x - [mm]u^{2})[/mm] (x - [mm]v^{2})(x[/mm] - [mm]w^{2}),[/mm]
> dann ist u+v+w eine Nullstelle von f(x)
>  Hinweis: Es  gilt [mm](u+v+w)^{2}[/mm] = [mm]u^{2} +v^{2}+w^{2}[/mm]
> +2(uv+uw+vw) und [mm](u+v+w)^{4}[/mm] = [mm]((u+v+w)^{2})^{2}[/mm]

Hallo,

was hast Du denn bisher getan?

Ziel ist ja festzustellen, daß f(u+v+w)=0 ist.

Ich würde also erstmal f(u+v+w) berechnen.

Du hast die Information, daß uvw=-q/8 ist.

Mit g(x) [mm]=x^{3}[/mm] +a [mm]x^{2}[/mm] + bx +c  und  g(x) =(x - [mm]u^{2})[/mm] (x - [mm]v^{2})(x[/mm] - [mm]w^{2}),[/mm]  kannst Du einen Koeffizientenvergleichmachen, woraus Du weitere Informationen über u,v,w erhältst, die Du dann (hoffentlich) bei f(u+v+w)=... einsetzen kannst.

Gruß v. Angela



Bezug
                
Bezug
Nullstellen bei Gl. 4. Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Fr 20.10.2006
Autor: Kati

Danke, das hat mir weitergeholfen. Auf die Idee mit dem Koeffizientenvergleich bin ich nicht gekommen.
Lg, Kati

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]