matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNullstellen Wurzelfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Nullstellen Wurzelfunktion
Nullstellen Wurzelfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen Wurzelfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:26 So 08.05.2011
Autor: matzematze

Aufgabe
Berechne die Nullstellen von: [mm] f(x)=0,99*(97000-1000x)^0.5 [/mm] + 0,01*(99000x [mm] -300)^0,5 [/mm]

hallo, irgendwie bekomme ich es nicht ganz hin. könnt ihr mir eventuell kurz schrittweise erklären, wie ich auf die nullstellen komme, damit ich es mal verstehe und nachvollziehen kann. vielen dank.

wenn ich die ableitung mache bekomme ich:

f'(x) = 0,99*0,5*(-1000)*(97000-1000x)^(-0,5) + 0,01*0,05*99000*(99000x-300)^(-0,5)
= -1000,495*(97000-1000x)^(-0,5)+49,5(99000x-300)^(-0,5)
= 0 (muss Null sein wegen den Nullstellen

darauf folgt:
1000,495*(97000-1000x)^(-0,5)=49,5(99000x-300)^(-0,5)

und wenn die terme unter den bruchstrich nach oben bringe

1000,495(99000x-300)^(0,5)= 49,5(97000-1000x)^(0,5)

das ganze wird durch 49,5 gekürzt und dann folgt:

20,21202*(99000x-300)^(0,5)= (97000-1000x)^(0,5) bzw (a = b, a ist linke seite, b ist rechte seite)

wenn ich jetzt hier die formel [mm] (a-b)^2=a^2-2ab-b^2=0 [/mm] anwende bekomme ich in dem term 2ab nicht die wurzelfunktion raus.

bzw könnt ihr mir sagen wie ich die nullstellen berechnen kann bzw sagen wie das funktioniert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Nullstellen Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 So 08.05.2011
Autor: MathePower

Hallo matzematze,

> Berechne die Nullstellen von: [mm]f(x)=0,99*(97000-1000x)^0.5[/mm] +
> 0,01*(99000x [mm]-300)^0,5[/mm]


Nullstellen hat diese Funktion keine.


>  hallo, irgendwie bekomme ich es nicht ganz hin. könnt ihr
> mir eventuell kurz schrittweise erklären, wie ich auf die
> nullstellen komme, damit ich es mal verstehe und
> nachvollziehen kann. vielen dank.
>  
> wenn ich die ableitung mache bekomme ich:
>  
> f'(x) = 0,99*0,5*(-1000)*(97000-1000x)^(-0,5) +
> 0,01*0,05*99000*(99000x-300)^(-0,5)
>  = -1000,495*(97000-1000x)^(-0,5)+49,5(99000x-300)^(-0,5)
>  = 0 (muss Null sein wegen den Nullstellen
>  
> darauf folgt:
>  1000,495*(97000-1000x)^(-0,5)=49,5(99000x-300)^(-0,5)


Hier muss doch stehen:

[mm]\blue{495}*(97000-1000x)^{-0,5}=\blue{495}*(99000x-300)^{-0,5}[/mm]

Kürze nun und quadriere anschließend die Gleichung,
um die Lösung zu ermitteln.


>  
> und wenn die terme unter den bruchstrich nach oben bringe
>  
> 1000,495(99000x-300)^(0,5)= 49,5(97000-1000x)^(0,5)
>  
> das ganze wird durch 49,5 gekürzt und dann folgt:
>  
> 20,21202*(99000x-300)^(0,5)= (97000-1000x)^(0,5) bzw (a =
> b, a ist linke seite, b ist rechte seite)
>  
> wenn ich jetzt hier die formel [mm](a-b)^2=a^2-2ab-b^2=0[/mm]
> anwende bekomme ich in dem term 2ab nicht die
> wurzelfunktion raus.
>  
> bzw könnt ihr mir sagen wie ich die nullstellen berechnen
> kann bzw sagen wie das funktioniert.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt  


Gruss
MathePower

Bezug
                
Bezug
Nullstellen Wurzelfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 So 08.05.2011
Autor: matzematze

vielen dank für die schnelle antwort:

nach dem kürzen erhalte ich

$ [mm] \cdot{}(97000-1000x)^{-0,5}=\cdot{}(99000x-300)^{-0,5} [/mm] $

darf ich jetzt einfach links und rechts quadrieren? oder verbieten mehr mathematische regeln dies?
$ [mm] (97000-1000x)^{-1}=(99000x-300)^{-1}$ [/mm]

dann würde ich erhalten:
$ (97000-1000x)=(99000x-300)$
und
$97300x=100000x$
und
x=0,973

ist dies jetzt korrekt gerechnet oder habe ich etwas falsch gemacht?

Bezug
                        
Bezug
Nullstellen Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 So 08.05.2011
Autor: MathePower

Hallo matzematze,

> vielen dank für die schnelle antwort:
>  
> nach dem kürzen erhalte ich
>  
> [mm]\cdot{}(97000-1000x)^{-0,5}=\cdot{}(99000x-300)^{-0,5}[/mm]
>  
> darf ich jetzt einfach links und rechts quadrieren? oder
> verbieten mehr mathematische regeln dies?


Sicher darfst Du links und rechts quadrieren,
wenn es den Rechenweg erleichtert.

Lösungen, die Du auf diesem Weg erhältst,
sind natürlich mittels der obigen Gleichung zu überprüfen.


>  [mm](97000-1000x)^{-1}=(99000x-300)^{-1}[/mm]
>  
> dann würde ich erhalten:
>  [mm](97000-1000x)=(99000x-300)[/mm]
>  und
> [mm]97300x=100000x[/mm]


Wohl eher: [mm]97300=100000x[/mm]


>  und
>  x=0,973
>  
> ist dies jetzt korrekt gerechnet oder habe ich etwas falsch
> gemacht?


Die Lösung ist so korrekt.

Natürlich mußt Du noch überprüfen,
ob an dieser Stelle die Ableitung verschwindet.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]