matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenNullstellen Ln-Scharfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Nullstellen Ln-Scharfunktion
Nullstellen Ln-Scharfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen Ln-Scharfunktion: Berechnung von Funktionswerten
Status: (Frage) beantwortet Status 
Datum: 19:34 Do 21.05.2009
Autor: jaktens

Aufgabe
geg.: [mm] f_{a}(x)=a^2*x^2-a*ln(x), [/mm] a>0 und x>0

Für welchen Wert von a liegt der Extremalpunkt von [mm] f_{a} [/mm] auf der x-Achse?

Hallo erstmal und Danke für euer Interesse!!

Ich habe zuerst die beiden Ableitungen bestimmt:

[mm] f´_{a}(x)=2*a^2*x-\bruch{a}{x} [/mm]
[mm] f´´_{a}(x)=2*a^2+\bruch{a}{x^2} [/mm]

Danach die Extremalstelle bestimmt:

f´_{a}(x)=0
[mm] 0=2*a^2*x-\bruch{a}{x}// [/mm] Erweitert
[mm] 0=\bruch{2*a^2*x^2-a}{x}// [/mm] Nur Zähler betrachtet/Ausklammern
[mm] 0=2*a^2(x^2-\bruch{1}{2a}// [/mm] Faktorisiert mittels 3.Binom
[mm] 0=2*a^2*(x+\bruch{1}{\wurzel{2a}})*(x-\bruch{1}{\wurzel{2a}}) [/mm]

Mögliche Extremstelle ist nur [mm] \bruch{1}{\wurzel{2a}} [/mm] da x>0

Überprüfung in f´´_{a}(x):
[mm] f´´_{a}(\bruch{1}{\wurzel{2a}})= 2*a^2+0,5 [/mm]
[mm] 2*a^2+0,5>0 [/mm] und somit Tiefstelle von [mm] f_{a} [/mm]

Berechnung des Funktionswertes der Tiefstelle:
[mm] f_{a}(\bruch{1}{\wurzel{2a}})=a^2*(\bruch{1}{\wurzel{2a}})^2-a*ln(\bruch{1}{\wurzel{2a}}) [/mm]
[mm] =\bruch{a}{2}-a*ln(\bruch{1}{\wurzel{2a}}) [/mm]

Und hier habe ich mein erstes Problem. Auf dem Lösungsbogen ist als Funktionswert [mm] \bruch{a}{2}(1+ln(2a)) [/mm] angegeben.

Respektive habe ich Probleme, den gesuchten Wert von a zu bestimmen!

[mm] 0=\bruch{a}{2}-a*ln(\bruch{1}{\wurzel{2a}}) [/mm]
[mm] a*ln(\bruch{1}{\wurzel{2a}})=\bruch{a}{2}/ [/mm] /a (Verlustumformung??)
[mm] ln(\bruch{1}{\wurzel{2a}})=\bruch{1}{2} [/mm]
[mm] \bruch{1}{\wurzel{2a}}=e^{0,5} [/mm] / ( = [mm] )^2 [/mm] (Gewinnumformung??)
[mm] \bruch{1}{2a}=e [/mm] / *2
[mm] \bruch{1}{a}=2e/Kehrwerte [/mm]
[mm] a=\bruch{1}{2e} [/mm]
Angegebener Lösungswert ist hier [mm] a=\bruch{1}{2*e}, [/mm] was übereinstimmen würde, wenn meine Umformungen richtig sind.

Kann ich den Ausdruck [mm] -ln(\bruch{1}{\wurzel{2a}}) [/mm] zu +ln(2a) umschreiben?? Und wenn ja, warum??? Bin momentan ein wenig ratlos!

        
Bezug
Nullstellen Ln-Scharfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Do 21.05.2009
Autor: MathePower

Hallo jaktens,

> geg.: [mm]f_{a}(x)=a^2*x^2-a*ln(x),[/mm] a>0 und x>0
>  
> Für welchen Wert von a liegt der Extremalpunkt von [mm]f_{a}[/mm]
> auf der x-Achse?
>  Hallo erstmal und Danke für euer Interesse!!
>  
> Ich habe zuerst die beiden Ableitungen bestimmt:
>  
> [mm]f´_{a}(x)=2*a^2*x-\bruch{a}{x}[/mm]
>  [mm]f´´_{a}(x)=2*a^2+\bruch{a}{x^2}[/mm]
>  
> Danach die Extremalstelle bestimmt:
>  
> f´_{a}(x)=0
>  [mm]0=2*a^2*x-\bruch{a}{x}//[/mm] Erweitert
>  [mm]0=\bruch{2*a^2*x^2-a}{x}//[/mm] Nur Zähler
> betrachtet/Ausklammern
>  [mm]0=2*a^2(x^2-\bruch{1}{2a}//[/mm] Faktorisiert mittels 3.Binom
>  
> [mm]0=2*a^2*(x+\bruch{1}{\wurzel{2a}})*(x-\bruch{1}{\wurzel{2a}})[/mm]
>  
> Mögliche Extremstelle ist nur [mm]\bruch{1}{\wurzel{2a}}[/mm] da
> x>0
>  
> Überprüfung in f´´_{a}(x):
>  [mm]f´´_{a}(\bruch{1}{\wurzel{2a}})= 2*a^2+0,5[/mm]
>  [mm]2*a^2+0,5>0[/mm]
> und somit Tiefstelle von [mm]f_{a}[/mm]
>  
> Berechnung des Funktionswertes der Tiefstelle:
>  
> [mm]f_{a}(\bruch{1}{\wurzel{2a}})=a^2*(\bruch{1}{\wurzel{2a}})^2-a*ln(\bruch{1}{\wurzel{2a}})[/mm]
>  [mm]=\bruch{a}{2}-a*ln(\bruch{1}{\wurzel{2a}})[/mm]
>  
> Und hier habe ich mein erstes Problem. Auf dem Lösungsbogen
> ist als Funktionswert [mm]\bruch{a}{2}(1+ln(2a))[/mm] angegeben.
>  
> Respektive habe ich Probleme, den gesuchten Wert von a zu
> bestimmen!
>  
> [mm]0=\bruch{a}{2}-a*ln(\bruch{1}{\wurzel{2a}})[/mm]
>  [mm]a*ln(\bruch{1}{\wurzel{2a}})=\bruch{a}{2}/[/mm] /a
> (Verlustumformung??)


Theoretisch muß hier auch a=0 betrachtet werden.
Dieser Wert ist aber ausgeschlossen, da a>0 vorausgesetzt.


>  [mm]ln(\bruch{1}{\wurzel{2a}})=\bruch{1}{2}[/mm]
>  [mm]\bruch{1}{\wurzel{2a}}=e^{0,5}[/mm] / ( = [mm])^2[/mm]
> (Gewinnumformung??)
>  [mm]\bruch{1}{2a}=e[/mm] / *2
>  [mm]\bruch{1}{a}=2e/Kehrwerte[/mm]
>  [mm]a=\bruch{1}{2e}[/mm]
>  Angegebener Lösungswert ist hier [mm]a=\bruch{1}{2*e},[/mm] was
> übereinstimmen würde, wenn meine Umformungen richtig sind.
>  
> Kann ich den Ausdruck [mm]-ln(\bruch{1}{\wurzel{2a}})[/mm] zu
> +ln(2a) umschreiben?? Und wenn ja, warum??? Bin momentan
> ein wenig ratlos!


Nein.

Es ist

[mm]-\operatorname{ln}\left(\bruch{1}{\wurzel{2a}}\right)=-\operatorname{ln}\left( \ \left(2a\right)^{-\bruch{1}{2}} \ \right)[/mm]


Siehe dazu: Logarithmusgesetze


Hier wurde der von Dir berechnete Funktionswert etwas umgeformt:

[mm]\bruch{a}{2}-a*ln(\bruch{1}{\wurzel{2a}})=\bruch{a}{2}-a*\left(\operatorname{ln}\left(1\right)-\operatorname{ln}\left(\wurzel{2a}\right)\right)[/mm]

[mm]=\bruch{a}{2}-a*\left(0-\operatorname{ln}\left(\wurzel{2a}\right)\right)=\bruch{a}{2}+a*\operatorname{ln}\left(\wurzel{2a}\right)[/mm]

[mm]=\bruch{a}{2}+a*\bruch{1}{2}*\operatorname{ln}\left(2a\right)=\bruch{a}{2}*\left(1+\operatorname{ln}\left(2a\right)\right)[/mm]

Daher sind auch Deine Umformungen korrekt.


Gruß
MathePower

Bezug
                
Bezug
Nullstellen Ln-Scharfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Do 21.05.2009
Autor: jaktens

Tausend Dank , jetzt ist alles klar!!!!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]