matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenNullstellen , Annäherungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Nullstellen , Annäherungswert
Nullstellen , Annäherungswert < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen , Annäherungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 08.01.2012
Autor: pc_doctor

Aufgabe
f(x) = [mm] \bruch{2x^3+6x^2-8}{2x} [/mm]
f'(x) = [mm] \bruch{8x^3+12x^2+16}{4x^2} [/mm]

Bestimmen Sie angenährt diejenige Stelle x>0 , an der die Funktion den Wert 10 annimmt.

Hallo , ich habe es so gemacht :

f(x) = 10

[mm] \bruch{2x^3+6x^2-8}{2x} [/mm] = 10

[mm] 2x^3+6x^2-8 [/mm] = 20x

[mm] 2x^3+6x^2-20x-8 [/mm] = 0

[mm] x^3+3x^2-10x-4 [/mm] = 0

Wie komme ich hier nun weiter ?
Polynomdivision ist blöd , da man die erste Stelle nicht so einfach erraten kann.

Newton-Verfahren hatten wir noch nicht , aber scheint einfach zu sein.

Ich brauch erstmal ein Näherungswert , ich habe hier als Näherungswert die 2 , f(2) = 8 , oder muss es noch genauer sein ?
Jetzt muss ich die 2 auch noch in die 1. Ableitung einsetzen , da kommt auch 8 raus.

Ich bekomme mit dem Newton-Verfahren die 1 raus , das geht aber garnicht.

Hab irgendwas falsch gemacht.
Wie geht man an solche Aufgaben ran ?

        
Bezug
Nullstellen , Annäherungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 So 08.01.2012
Autor: MathePower

Hallo pc_doctor,

> f(x) = [mm]\bruch{2x^3+6x^2-8}{2x}[/mm]
>  f'(x) = [mm]\bruch{8x^3+12x^2+16}{4x^2}[/mm]
>  
> Bestimmen Sie angenährt diejenige Stelle x>0 , an der die
> Funktion den Wert 10 annimmt.
>  Hallo , ich habe es so gemacht :
>  
> f(x) = 10
>  
> [mm]\bruch{2x^3+6x^2-8}{2x}[/mm] = 10
>  
> [mm]2x^3+6x^2-8[/mm] = 20x
>  
> [mm]2x^3+6x^2-20x-8[/mm] = 0
>  
> [mm]x^3+3x^2-10x-4[/mm] = 0
>  
> Wie komme ich hier nun weiter ?
>  Polynomdivision ist blöd , da man die erste Stelle nicht
> so einfach erraten kann.
>  
> Newton-Verfahren hatten wir noch nicht , aber scheint
> einfach zu sein.
>  
> Ich brauch erstmal ein Näherungswert , ich habe hier als
> Näherungswert die 2 , f(2) = 8 , oder muss es noch genauer
> sein ?
>  Jetzt muss ich die 2 auch noch in die 1. Ableitung
> einsetzen , da kommt auch 8 raus.
>  


Zur Ermittlung von [mm]f\left(x\right)=10[/mm]
betrachtest Du [mm]f\left(x\right)-10=0[/mm]

Dann kannst Du das Newton-Verfahren anwenden:

[mm]x_{n+1}=x_{n}-\bruch{f\left(x_{n}\right)-10}{f'\left(x_{n}\right)}[/mm]

Damit bekommt man mit dem Näherungswert [mm]x_{0}=2[/mm]
als bessere Näherung [mm]x_{1}=\bruch{9}{4}[/mm]


> Ich bekomme mit dem Newton-Verfahren die 1 raus , das geht
> aber garnicht.
>  
> Hab irgendwas falsch gemacht.
>  Wie geht man an solche Aufgaben ran ?


Gruss
MathePower

Bezug
                
Bezug
Nullstellen , Annäherungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 So 08.01.2012
Autor: pc_doctor

Super, vielen Dank für die Antwort.

Nie wieder Polynomdivision :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]