matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenNullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Nullstellen
Nullstellen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Sa 27.11.2010
Autor: michaela-pae

Aufgabe
Bestimmen Sie - sofern existent - die Nullstellen der Funktion

f(x) = [mm] (2x-3)^2- (x-1)*(2x-3)/(2x-3)^2 [/mm]


Hi...

ich habe versucht die NST auszurechnen, bekomme aber ein anderes Ergebnis als meine Musterlösung.

Ich habe [mm] (2x-3)^2 [/mm] gekürzt. dann habe ich die klammern ausgerechnet.

f(x)= [mm] -2x^2+5x+3 [/mm] <=> [mm] x^2-2.5x-1.5 [/mm]  ---> dann in die p-q-formel eingesetzt, und bekomme 1.53 raus !!! Aber Musterlösung x=2 !!!!!!!!!


könnt ihr mir weiterhelfen

danke


MFG

M.P.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Sa 27.11.2010
Autor: Gonozal_IX

Hallo Michaela,

erstmal vorweg: Nutze doch den Formeleditor, dann ist auch gleich viel klarer, was du meinst.

Das was du da hingeschrieben hast, wäre

$f(x) =  [mm] (2x-3)^2- \bruch{(x-1)(2x-3)}{(2x-3)^2} [/mm] $

Was du beschrieben hast, klingt aber eher nach

$f(x) =  [mm] \bruch{(2x-3)^2- (x-1)(2x-3)}{(2x-3)^2} [/mm] $

In beiden Fällen kannst du aber gar nicht kürzen!

Bedenke: Aus Summen kürzen nur die......... ich nenne sie mal Unwissende ;-)


Lösungsansatz für den ersten Fall: Auf Hauptnenner bringen und dann bedenken: Ein Bruch ist Null, wenn der Zähler Null ist!

Für den Zweiten Fall reicht der Hinweis: Ein Bruch ist Null, wenn der Zähler Null ist!

MFG,
Gono.

Bezug
                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Sa 27.11.2010
Autor: michaela-pae

Muss ich jetzt nur den Zähler betrachten und ihn gleich null setzten??

Bezug
                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Sa 27.11.2010
Autor: M.Rex

Hallo

Im Prinzip ja, wenn du aber

$ f(x) = [mm] \bruch{(2x-3)^2- (x-1)(2x-3)}{(2x-3)^2} [/mm] $

hast, würde ich erst einmal 2x+3 ausklammern, also:

$ f(x) = [mm] \bruch{(2x-3)[(2x-3)-(x-1)]}{(2x-3)^2} [/mm] $
$ = [mm] \bruch{(2x-3)-(x-1)}{2x-3} [/mm] $

Ersten ist der Term im Zähler einfacher geworden, und ausserdem musst du dich nicht mit der hebbaren Definiionslücke [mm] x_{d}, [/mm] für die gilt [mm] 2x_{d}-3=0 [/mm] herumschlagen.

Marius


Bezug
                                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 Sa 27.11.2010
Autor: michaela-pae

danke :-) !!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]