matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenNullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Nullstellen
Nullstellen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:40 Fr 30.01.2009
Autor: Englein89

Hallo,

ich habe eine Frage zu meinen Nullstellen.

Ich habe mit Lagrange gerechnet und heraus, dass x=y ist und habe

x= [mm] \pm \bruch{\wurzel{2}}{2} [/mm] =y

Wie sehen nun meine stationären Punkte aus? Kann mir jemand dabei helfen?

        
Bezug
Nullstellen: mehr Infos!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:43 Fr 30.01.2009
Autor: Roadrunner

Hallo Englein!


Sollen wir nun unsere Glaskugeln und Kaffesatzmaschinen anwerfen?

Vielleicht verrätst Du uns auch Deine Aufgabenstellung oder zumindest Deine Funktion, welche Du untersuchen sollst.


Gruß vom
Roadrunner


Bezug
                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Fr 30.01.2009
Autor: Englein89

Ich habe es bewusst weggelassen, weil ich mir bei den Nullstellen sicher bin und ein Nachrechnen nicht nötig ist.

Die Funktion ist

f(x,y)=x+y und die Nebenbedingung [mm] x+^2+y^2 \le [/mm] 1

ABleitung nach x: 1+2 [mm] \lambda [/mm] x=0
nach y: 1+2 [mm] \lambda [/mm] y=0
nach [mm] \lambda [/mm] : [mm] x^2+y^2-1=0 [/mm]

Die stationären Punkte habe ich wie gesagt so raus, dass x=y ist. Ich weiß aber nun nicht, wie die stationären Punkte lauten sollen. Ich kombiniere ja immer ein x und ein y, aber wie sieht das aus, wenn x=y ist?

Bezug
                        
Bezug
Nullstellen: einsetzen
Status: (Antwort) fertig Status 
Datum: 14:55 Fr 30.01.2009
Autor: Roadrunner

Hallo Englein!


Und zur Bestimmung der stationären Punkte (also aller Koordinaten) benötigt man exakt die Funktionsvorschrift.

Die 3. Koordinate (= z-Koordinate) erhält man durch Einsetzen:
[mm] $$z_{1/2} [/mm] \ = \ [mm] f\left(x_{1/2} \ ; \ y_{1/2}\right) [/mm] \ = \ [mm] \pm\bruch{\wurzel{2}}{2}\pm\bruch{\wurzel{2}}{2} [/mm] \ = \ [mm] \pm\wurzel{2}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Fr 30.01.2009
Autor: Englein89

Das was du meinst ist für mich der Wert des stationären Punkts, ich meinte nur den stationären Punkt, also

[mm] f(x_1, y_1), [/mm] ich wollte wissen, was diese Punkte sind, die ich in f einsetze. Dieses x=y hat mich dabei verwirrt.

Habe ich dann nur die negativen Punkte und nur die positiven Punkte, oder kann ein Wert der positive und einer der negative sein?

Bezug
                                        
Bezug
Nullstellen: Deine Berechnung
Status: (Antwort) fertig Status 
Datum: 15:04 Fr 30.01.2009
Autor: Roadrunner

Hallo Englein!


> Habe ich dann nur die negativen Punkte und nur die
> positiven Punkte, oder kann ein Wert der positive und einer
> der negative sein?

Das genau muss doch Deine Berechnung ergeben.

Und wenn gilt $x \ = \ y$ , haben beide Werte auch selbstverständlich dasselbe Vorzeichen, da die Werte sonst nicht gleich wären.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]