matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisNullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Nullstellen
Nullstellen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Di 03.02.2004
Autor: Nick

Hallo, könnt ihr mir nen Tipp bei der Aufgabe geben? Ich hab mal wieder nen massives Eichenbrett vor dem Kopf.

Gegeben sei die folgende Abbildungsvorschrift:

f(x) := exp([mm]\bruch{ln(1+x²)}{x}[/mm].

Bestimmen Sie den größt möglichen Definitionsbereich zu f und geben Sie die Grenzwerte von f an den Rändern des Definitionsbereiches an.

Danke schon mal!!

Euer
Nick

        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 03.02.2004
Autor: Marc

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Nick,

dann will ich mir nochmal an Grenzwerten die Finger verbrennen ;-)

Der maximal Definitionsbereich ist offenbar $D=\IR\setminus\{0\}$, denn das Argument des Logarithmus ist für alle $x\in\IR$ positiv, und $\exp$ schränkt den Definitionsbereich auch nicht ein. "Probleme" macht nur der Nenner des Bruches, wenn er Null wird, also bei $x=0$.

Damit ergeben sich vier Ränder des Definitionsbereichs:
(a) $-\infty$
(b) $+\infty$
(c) $-0$ (von links an die Null)
(d) $+0$ (von rechts an die Null)

Bei all diesen Grenzwerten müßtest du mit den Sätzen von l'Hôpital weiter kommen, ich probiere es mal für (b):

Und zwar berechne ich zunächst den Limes des Arguments von $\exp$, da
$\limes \exp\left( \frac{f(x)}{g(x)}\right) = \exp\left( \limes \frac{f(x)}{g(x)}\right)$
gilt, wegen der Stetigkeit von $\exp$.

$\limes_{x\to+\infty}\frac{\ln(1+x^2)}{x}=\limes_{x\to+\infty}\frac{f(x)}{g(x)}}$

Es gilt $f(x)=\ln(1+x^2)\to+\infty$ und $g(x)=x\to+\infty$ für $x\to+\infty$, nach dem Satz von l'Hôpital wäre der Limes also gleich (unter der Voraussetzung, dass folgender Limes überhaupt exisitiert):

$=\limes_{x\to\+\infty}\frac{f'(x)}{g'(x)}$
$=\limes_{x\to\+\infty}\frac{2x*\frac{1}{1+x^2}}{1}$
$=\limes_{x\to\+\infty}\frac{2x}{1+x^2}=0$

Damit haben wir
$\limes_{x\to+\infty}\exp\left( \frac{\ln(1+x^2)}{x}\right)$
$=\exp\left( \limes_{x\to+\infty}\frac{f(x)}{g(x)}}\right) $
$=\exp\left( \limes_{x\to+\infty}\frac{f'(x)}{g'(x)}}\right) $
$=\exp\left( 0 \right) $
$=1$

Kommst du nun zurecht mit den anderen Grenzwerten? Falls nicht, weißt du ja, wo du uns findest :-)

Alles Gute,
Marc.

Bezug
                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Di 03.02.2004
Autor: Nick

Danke,

habe jetzt alles verstanden. Hatte wohl ein Brett vor dem Kopf.

Nick.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]