matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisNullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Nullstellen
Nullstellen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: 3. Grades
Status: (Frage) beantwortet Status 
Datum: 20:05 Di 29.08.2006
Autor: hooover

Aufgabe
Bestimme die Nullstelle von

[mm] f(x)=x^3+3x^2-4 [/mm]

Hallo ich hoofe ich nerve nicht mit meinen vielen Fragen aber und an dieser Stelle ein dickes LOB an alle Ihr seid einfach klasse und eure Beiträge haben mir immer geholfen DAnke


zu der Aufgabe


[mm] f(x)=x^3+3x^2-4 [/mm]

ja also ich habe keine Ahnung wie ich vorgehen soll. Bitte ein Tip


vielen DAnk  hooover!

        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Di 29.08.2006
Autor: Bastiane

Hallo!

> Bestimme die Nullstelle von
>  
> [mm]f(x)=x^3+3x^2-4[/mm]
>  
> Hallo ich hoofe ich nerve nicht mit meinen vielen Fragen
> aber und an dieser Stelle ein dickes LOB an alle Ihr seid
> einfach klasse und eure Beiträge haben mir immer geholfen
> DAnke

Schön, dass du dich bedankst. :-) Besser ist es aber, wenn du das direkt als Reaktion auf die dir gegebenen Antworten schreibst, dann wissen nämlich auch die richtigen Leute, dass sie gemeint sind. Ich weiß z. B. nicht, ob ich dir schon einmal bei irgendwas geholfen habe, und die Leute, die das getan haben, lesen diesen Artikel hier vielleicht nicht. ;-) (Aber hier ist immer noch besser als gar nicht! :-))

> zu der Aufgabe
>  
>
> [mm]f(x)=x^3+3x^2-4[/mm]
>  
> ja also ich habe keine Ahnung wie ich vorgehen soll. Bitte
> ein Tip

Die Frage gehört aber eigentlich in die Schulmathematik, oder? (Das kann auch wichtig sein, denn in der Schule bekommt man meistens Aufgaben, die verhältnismäßig einfach und meistens exakt lösbar sind. Theoretisch könnte es hier sein, dass du nur mit numerischen Verfahren auf eine Lösung kommst, das würde aber eher in der Hochschulmathematik vorkommen. Also achte demnächst mal darauf, die Frage dort zu stellen, wo sie hingehört. Soll nicht böse gemeint sein, nur als Hinweis. :-))

So, nun zu der Aufgabe. Du hast doch bestimmt schon mal etwas von MBPolynomdivision gehört, oder? Die eignet sich hier vorzüglich. Dafür musst du allerdings die erste Nullstelle erstmal raten, dafür nimmt man meistens die Zahlen 1,-1,2,-2 und notfalls noch 3 und -3. Wenn man dann noch nichts gefunden hat, überlegt man, ob es sich vielleicht um eine Funktion handelt, deren Nullstellen man nur numerisch berechnen kann... Aber hier dürftest du feststellen, dass wir mit x=1 bereits eine Nullstelle gefunden haben, demnach lautet die Polynomdivision: [mm] (x^3+3x^2-4):(x-1)=... [/mm]
Schaffst du den Rest alleine?

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Nullstellen: PBZ
Status: (Frage) beantwortet Status 
Datum: 20:45 Di 29.08.2006
Autor: hooover

Aufgabe
Bestimme die PBZ der folgenden rationalen Funktion.

[mm] \bruch{3x^2+5x+1}{x^3+3x^2-4} [/mm]

hallo,

also dies war nur ein teil einer Aufgabe die zur Partialbruchzerlegung gehörte.

eigentlich AUfgabe lautet:

[mm] \bruch{3x^2+5x+1}{x^3+3x^2-4} [/mm]

1.
NST. von q

[mm] x^3+3x^2-4=0 [/mm]

dies habe wie vorgeschlagen mit der POlynomdivison gemacht

[mm] 3x^2+5x+1:(x-1)=x^2+4x+4 [/mm]

mit p-q-Formel

[mm] x_{1}=-2 [/mm]

[mm] x_{2}=-2 [/mm]

und die geratene Nullstelle [mm] x_{3}=1 [/mm]


[mm] \bruch{3x^2+5x+1}{(x-1)(x+2)(x+2)}=\bruch{A}{(x-1)}+\bruch{B}{(x+2)}\bruch{C}{(x+2)} [/mm]

A=1

B=0

C=0

f(x)=1

mmhhh das erschient mir schon komisch. Da fählt doch was oder?

Danke Gruß hooover

Bezug
                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Di 29.08.2006
Autor: felixf

Hallo!

> hallo,
>  
> also dies war nur ein teil einer Aufgabe die zur
> Partialbruchzerlegung gehörte.
>  
> eigentlich AUfgabe lautet:
>  
> [mm]\bruch{3x^2+5x+1}{x^3+3x^2-4}[/mm]
>  
> 1.
>  NST. von q
>  
> [mm]x^3+3x^2-4=0[/mm]
>  
> dies habe wie vorgeschlagen mit der POlynomdivison gemacht
>  
> [mm]3x^2+5x+1:(x-1)=x^2+4x+4[/mm]

Du meinst [mm] $(x^3 [/mm] + 3 [mm] x^2 [/mm] - 4) : (x-1) = [mm] x^2 [/mm] + 4 x + 4$.

> mit p-q-Formel

Mit der Binomischen Formel gehts auch...

> [mm]x_{1}=-2[/mm]
>  
> [mm]x_{2}=-2[/mm]
>  
> und die geratene Nullstelle [mm]x_{3}=1[/mm]

Zum Nullstellenraten: Wenn das Polynom normiert ist (vor der hoechsten Potenz von $x$ also eine 1 steht) und alle Koeffizienten ganze Zahlen sind, dann gilt fuer jede Nullstelle, dass sie entweder irrational ist oder das sie eine ganze Zahl ist, die den konstanten Term teilt.

> [mm]\bruch{3x^2+5x+1}{(x-1)(x+2)(x+2)}=\bruch{A}{(x-1)}+\bruch{B}{(x+2)}\bruch{C}{(x+2)}[/mm]

Da fehlt ein $+$ zwischen den hinteren beiden Bruchstrichen.

Ausserdem, du hast eine doppelte Nullstelle (naemlich $-2$). D.h. du musst den Ansatz [mm] $\frac{3x^2+5x+1}{(x-1)(x+2)^2} [/mm] = [mm] \frac{A}{x - 1} [/mm] + [mm] \frac{B}{x + 2} [/mm] + [mm] \frac{C}{(x+2)^2}$ [/mm] machen.

> A=1
>  
> B=0
>  
> C=0

Soll das eine Loesung sein? Das glaube ich nicht.

> f(x)=1

Was meinst du damit? Was ist $f$?

> mmhhh das erschient mir schon komisch. Da fählt doch was
> oder?

Ich weiss nicht genau was du meinst.

Uebrigens: 'fehlen' schreibt sich immer noch mit 'e'.

LG Felix


Bezug
                                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Di 29.08.2006
Autor: hooover

Hallo,

oh ich habe da wohl was vergessen

und nach dem neuen Ansatz müßte das so aussehen.

A=1

B=-1

C=-1

[mm] \bruch{3x^2+5x+1}{(x-1)(x+2)^2}=\bruch{1}{x-1}-\bruch{1}{x+2}-\bruch{1}{(x+2)^2} [/mm]

ist das schon die Lösung?

Bezug
                                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Di 29.08.2006
Autor: felixf

Hallo!

> und nach dem neuen Ansatz müßte das so aussehen.
>  
> A=1
>  
> B=-1
>  
> C=-1
>  
> [mm]\bruch{3x^2+5x+1}{(x-1)(x+2)^2}=\bruch{1}{x-1}-\bruch{1}{x+2}-\bruch{1}{(x+2)^2}[/mm]
>  
> ist das schon die Lösung?

Nein, das ist falsch. Es muss $A = 1$, $B = 2$ und $C = -1$ rauskommen. Schreib doch mal deinen Rechenweg hier hin, wenn du den Fehler alleine nicht findest.

LG Felix


Bezug
                                                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 Di 29.08.2006
Autor: hooover

Hallo Felix vielen DAnk für die Hilfe

ich glaube ich wei wo der Fehler liegt.

Ich hab das nach der "Zuhaltemethode" glöst. Die funktioniert aber nur bei einfachen Nenner Nullstellen.

ICh find leider in meinen Unterlagen die andere methode nicht mehr.

Bitte sag wie das Rezept hierfür lautet. Danke Gruß hooover

Bezug
                                                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Di 29.08.2006
Autor: felixf

Hallo!

> ich glaube ich wei wo der Fehler liegt.
>  
> Ich hab das nach der "Zuhaltemethode" glöst. Die
> funktioniert aber nur bei einfachen Nenner Nullstellen.

Genau!

> ICh find leider in meinen Unterlagen die andere methode
> nicht mehr.
>  
> Bitte sag wie das Rezept hierfür lautet. Danke Gruß hooover

Du bringst die rechte Seite auf einen Hauptnenner (der gleich dem Nenner auf der linken Seite ist) und machst einen Koeffizientenvergleich mit den beiden Zaehlerpolynomen.

LG Felix


Bezug
                                                                
Bezug
Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Di 29.08.2006
Autor: hooover

Hallo felix,

gut das müßte dann so aussehen


[mm] \bruch{-3x-5-\bruch{1}{x}}{(x+2)^2}=\bruch{Ax+2A+Bx+2B+C}{(x+2)^2} [/mm]

soweit so gut

wie mach ich jetzt den Koeffizientenvergleich. Hab ich noch nie gemacht

Danke Gruß hooover!

Bezug
                                                                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:18 Mi 30.08.2006
Autor: felixf

Hallo!

> gut das müßte dann so aussehen
>  
>
> [mm]\bruch{-3x-5-\bruch{1}{x}}{(x+2)^2}=\bruch{Ax+2A+Bx+2B+C}{(x+2)^2}[/mm]

Ok das [mm] $\frac{1}{x-1}$ [/mm] kann man natuerlich weglassen, aber warum hast du dann noch durch $x$ geteilt? Die Gleichung stimmt so nicht.

Und wieso hast du links ploetzlich ueberall ein $-$ vorne?

Und wo ist auf der rechten Seite im Zaehler das [mm] $\frac{1}{x}$? [/mm]

Schreib doch mal wie du auf das hier kommst.

> wie mach ich jetzt den Koeffizientenvergleich. Hab ich noch
> nie gemacht

Wenn du zwei Polynome hast, dann sind die genau dann gleich fuer alle $x [mm] \in \IR$ [/mm] (es reicht schon, wenn sie fuer unendlich viele verschiedene $x$ uebereinstimmen), wenn ihre Koeffizienten alle uebereinstimmen.

Wenn du also $3 [mm] x^2 [/mm] + 5 x + 1 = A (x + [mm] 2)^2 [/mm] + B (x - 1) (x + 2) + C (x - 1) = (A + B) [mm] x^2 [/mm] + (4 A + B + C) x + (4 A - 2 B - C)$ hast, dann muss $A + B = 3$ sein, $4 A + B + C = 5$ und $4 A - 2 B - C = 1$.

(Betrachte die Differenz: Wenn die Koeffizienten nicht gleich sind, dann ist das ein von $0$ verschiedenes Polynom; dieses kann hoechstens so viele Nullstellen haben wie sein Grad ist, also nur endlich viele. Da die Polynome aber fuer unendlich viele Werte uebereinstimmen, ist deren Differenz fuer unendlich viele Werte gleich 0.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]