matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikNullstelle der Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - Nullstelle der Funktion
Nullstelle der Funktion < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstelle der Funktion: Idee
Status: (Frage) beantwortet Status 
Datum: 20:42 Mo 16.07.2007
Autor: loop26

Aufgabe
Geg.:
[mm] e^x [/mm] = -x

a) Zeichnen
b) Nullstelle "ablesen"
c) Gegen die Nullstelle iterieren  

hallo nochmal,

Wie sieht [mm] e^x [/mm] = -x aus? Und wie lese ich da die Nullstelle ab? Wie mach ich die Iteration?

Kein Peil echt....


Danke


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nullstelle der Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Mo 16.07.2007
Autor: schachuzipus

Hallo loop,

du suchst also dasjenige [mm] x\in\IR [/mm] mit [mm] e^x=-x [/mm]

Nun definiere dir 2 Funktionen [mm] f(x)=e^x [/mm]  und g(x)=-x

Die zeichne mal in ein Koordinantensystem ein.

Dann lies ab, wo in etwa ihr Schnittpunkt liegt

Zur Iteration:

Die Lösung von [mm] e^x=-x [/mm] zu bestimmen, ist dasselbe wie [mm] e^x+x=0 [/mm] zu lösen

Definiere dir also eine Funktion [mm] h(x)=e^x+x [/mm] und bestimme deren Nullstelle mit dem Newton-Verfahren (zB.)


Gruß

schachuzipus


Bezug
                
Bezug
Nullstelle der Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Mo 16.07.2007
Autor: loop26

Top! Danke sehr.
loop26


Bezug
                        
Bezug
Nullstelle der Funktion: Ergebnis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Di 17.07.2007
Autor: loop26

So, hab es jetzt durchgerechnet, falls irgendwann jemand die selbe Aufgabe hat :) Korrigiert mich wenn es falsch ist.

a) Zeichnen von Funktionen am besten mit diesem Applet: http://www.gto.mos.schule-bw.de/unt/applets/plot.html

b) Schnittpunkt ablesen: in diesem Fall [mm] x_0=-0,5 [/mm]

c) Gegen die Nullstelle iterieren (3 Stellen genau)

Nun mit Newton eine Iteration machen:

[mm] x_1 [/mm] = [mm] x_0 [/mm] - [mm] f(x_0) [/mm] / [mm] f'(x_0) [/mm]

Als Ergebnis kommt -0,567 raus.


Gruß,
loop26


Bezug
                                
Bezug
Nullstelle der Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Di 17.07.2007
Autor: mathemaduenn

Hallo loop26,

> a) Zeichnen von Funktionen am besten mit diesem Applet:
> http://www.gto.mos.schule-bw.de/unt/applets/plot.html

oder []www.funkyplot.de

> b) Schnittpunkt ablesen: in diesem Fall [mm]x_0=-0,5[/mm]
>  
> c) Gegen die Nullstelle iterieren (3 Stellen genau)
>  
> Nun mit Newton eine Iteration machen:
>  
> [mm]x_1[/mm] = [mm]x_0[/mm] - [mm]f(x_0)[/mm] / [mm]f'(x_0)[/mm]
>
> Als Ergebnis kommt -0,567 raus.

Sieht gut aus. (siehe auch []dieses Beispiel nicht das Du denkst Newton Verfahren wäre die einzige Möglichkeit ;-) )
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]