matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitNullpunkt stetig'?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Nullpunkt stetig'?
Nullpunkt stetig'? < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullpunkt stetig'?: Idee richtig?
Status: (Frage) beantwortet Status 
Datum: 21:36 Mo 13.01.2014
Autor: Boastii

Aufgabe
Die Funktion [mm] f:[-1;+1] \to \mathbb R [/mm] sei beschränkt auf [-1;1]. Zeigen Sie bitte, dass die Funktion
[mm] g:[-1;+1] \ni x \mapsto f(x)*x \in \mathbb R [/mm]

im Nullpunkt stetig ist.


Hallo liebe Community,

also irgendwie versteh ich das nicht so ganz - wie ich [mm] f [/mm] zu verstehen habe. Mir ist zwar die Aufgabenstellung (also was gemacht werden soll ) klar.

Ich möchte mithilfe des Folgenkriteriums Zeigen dass [mm] g [/mm] im Nullpunkt stetig ist.

Also:
Für jede Folge [mm] (x_n)_{ n \in \mathbb N } [/mm] die Element von [mm] [-1;+1] [/mm] ist,  und gegen den Nullpunkt konvergiert, also eine Nullfolge ist:
[mm] \limes_{n\rightarrow\infty} x_n = 0 \in [-1;+1] [/mm]

So können wir die Folge [mm] x_n [/mm] als [mm] x_n= \pm \frac{1}{n} \in [-1; +1] [/mm] schreiben.

Und bilden die Folge der Funktion [mm] (g(x_n))_{n \in \mathbb N} [/mm] sodass diese gegen g(0) konvergiert. Also gegen [mm] g(0)= f(0)*0= 0 [/mm].

Also schreiben wir:

[mm] g(0) = f(x_n) * x_n [/mm]

Und betrachten den links bzw. rechtsseitigen Grenzwert:

[mm] \limes_{n\rightarrow\infty} 0=f(+\frac{1}{n}) * (+\frac{1}{n}) [/mm]
Durch die Rechenregeln erhalten wir [mm] 0=a* \limes_{n\rightarrow\infty}(+\frac{1}{n}) [/mm] und weiter [mm] 0=a*0 = 0[/mm]

Nun den linksseitigen Grenzwert:

[mm] \limes_{n\rightarrow\infty} 0=f(- \frac{1}{n}) * (-\frac{1}{n}) [/mm]
Durch die Rechenregeln erhalten wir [mm] 0=b* \limes_{n\rightarrow\infty}(-\frac{1}{n}) [/mm] und weiter [mm] 0=b*0 = 0 [/mm]

Somit ist nach dem Folgenkriterium die Funktion g stetig im Nullpunkt.

Wäre das so richtig?

Lg

        
Bezug
Nullpunkt stetig'?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mo 13.01.2014
Autor: Gonozal_IX

Hiho,

deine Idee ist in Ordnung, enthält aber noch einige (schwerwiegende) Fehler.

> So können wir die Folge [mm]x_n[/mm] als [mm]x_n= \pm \frac{1}{n} \in [-1; +1][/mm] schreiben.

Warum sollte das gehen? Die Aussage ist schlichtweg falsch.
Zeige mir mal bitte, wie du bspw die Folge [mm] $\bruch{\sqrt[n]{n}}{\left(1+\bruch{7}{n}\right)^n}\bruch{n^n}{n!}$ [/mm] so schreiben möchtest.

> Und bilden die Folge der Funktion [mm](g(x_n))_{n \in \mathbb N}[/mm]
> sodass diese gegen g(0) konvergiert. Also gegen [mm]g(0)= f(0)*0= 0 [/mm].

Korrekt.

> Also schreiben wir:
>  
> [mm]g(0) = f(x_n) * x_n [/mm]

Hahnebüchener Unsinn, warum sollte diese Gleichheit gelten.

Es ist zu zeigen: [mm] $\lim_{x_n\to 0} f(x_n) [/mm] * [mm] x_n [/mm] = g(0) = 0$


> Und betrachten den links bzw. rechtsseitigen Grenzwert:

Kannst du machen, brauchst du aber gar nicht, du kannst den Grenzwert direkt berechnen.

> [mm]\limes_{n\rightarrow\infty} 0=f(+\frac{1}{n}) * (+\frac{1}{n})[/mm]
> Durch die Rechenregeln erhalten wir [mm]0=a* \limes_{n\rightarrow\infty}(+\frac{1}{n})[/mm] und weiter [mm]0=a*0 = 0[/mm]

In der Aufgabenstellung steht nirgends, dass der linksseitige oder rechtsseitige Grenzwert von f an der Stelle 0 überhaupt existiert.
Dein a oder b muss also gar nicht existieren.

Das tolle ist: Muss er auch gar nicht!

Du hast auch noch nirgends die Beschränktheit von f verwendet, das wäre für dich schonmal ein Indiz dafür, dass du was verkehrt gemacht hast.

Tipp: Verwende die Beschränktheit von f und die bekannte Tatsache, dass für Folgen gilt: [mm] $a_n \to 0\; \gdw \; |a_n| \to [/mm] 0$

Gruß,
Gono.

Bezug
        
Bezug
Nullpunkt stetig'?: Antwort
Status: (Antwort) fertig Status 
Datum: 06:13 Di 14.01.2014
Autor: fred97

Es gibt ein c [mm] \ge [/mm] 0 mit |f(x)| [mm] \le [/mm] c für alle x [mm] \in [/mm] [-1,1]. Damit ist


|g(x)| [mm] \le [/mm] c|x| für alle x [mm] \in [/mm] [-1,1].

FRED

Bezug
        
Bezug
Nullpunkt stetig'?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:51 Di 14.01.2014
Autor: Marcel

Hallo Boasti,

nur mal nebenbei:

> Die Funktion [mm]f:[-1;+1] \to \mathbb R[/mm] sei beschränkt auf
> [-1;1]. Zeigen Sie bitte, dass die Funktion
>  [mm]g:[-1;+1] \ni x \mapsto f(x)*x \in \mathbb R[/mm]

es würde folgendes reichen: Sei $0 [mm] \in [/mm] D$ und $f [mm] \colon [/mm] D [mm] \to \IR$ [/mm] sei beschränkt.
Ist $g [mm] \colon D_g \to \IR$ [/mm] mit [mm] $D_g \subseteq [/mm] D$ und $0 [mm] \in [/mm] D$ definiert durch

    [mm] $g(x):=x*f(x)\,$ [/mm] für alle $x [mm] \in D_g,$ [/mm]

dann ist [mm] $g\,$ [/mm] stetig in [mm] $0\,.$ [/mm]

Das kann man mit Freds Ungleichung vollkommen analog einsehen.

P.S. In dieser Formulierung sollte man vielleicht eine Fallunterscheidung
machen, ob [mm] $0\,$ [/mm] Häufungspunkt von [mm] $D_g$ [/mm] ist oder nicht - wobei man sowieso
weiß, dass Funktionen in allen Punkten ihres Definitionsbereichs, die isoliert
liegen, stetig sind (den Beweis dazu kann man schnell hinschreiben).

P.P.S. Oben sollte man hier vielleicht noch $D [mm] \subseteq \IC$ [/mm] (oder nur $D [mm] \subseteq \IR$) [/mm] fordern.

Gruß,
  Marcel

Bezug
                
Bezug
Nullpunkt stetig'?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Mi 15.01.2014
Autor: Boastii

Hey, danke erst mal für Eure Antworten.

Also zuerst habe ich meine Fehler nun verstanden.
Aber dennoch verstehe ich nicht ganz worauf Du (Marcel) hinaus willst, oder was mir das sagt.

Könntest du mir das noch ein bisschen erklären?

Lg

Bezug
                        
Bezug
Nullpunkt stetig'?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mi 15.01.2014
Autor: Marcel

Hallo Boasti,

> Hey, danke erst mal für Eure Antworten.
>
> Also zuerst habe ich meine Fehler nun verstanden.
> Aber dennoch verstehe ich nicht ganz worauf Du (Marcel)
> hinaus willst, oder was mir das sagt.
>
> Könntest du mir das noch ein bisschen erklären?

naja, ich habe die Voraussetzungen "des Satzes" auf "Wesentliche(re)s"
reduziert - das sollte normalerweise helfen, zu sehen, was eigentlich beim
Beweis der Aussage "benutzt werden soll".

Ich finde es z.B. unnötig, dass [mm] $f\,$ [/mm] auf dem doch wirklich speziellen Intervall
[mm] $[-1,1]\,$ [/mm] definiert ist - wenn Du Freds Hinweis anguckst, wirst Du sehen,
dass man das eigentlich an keiner einzigen Stelle wirklich braucht...
Ich wollte Dir sozusagen "nur die wichtigsten Informationen vorfiltern", die
Du zum Lösen der Aufgabe heranziehen solltest...

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]