matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieNullmengen zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - Nullmengen zeigen
Nullmengen zeigen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullmengen zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Mi 07.11.2007
Autor: Irmchen

Aufgabe
Zeigen Sie, dass die folgenden Mengen bezüglich des Lebesque - Maßes im [mm] \mathbb R^3 [/mm] beziehungsweise [mm] \mathbb R^3 [/mm] Nullmengen sind.

(i) [mm] \{ (x,y,z) \in \mathbb R^3 \ \ \| \ \ x = y = z \} \\ [/mm]

(ii)  Der Graph einer stetigen Abbildung [mm] f : \mathbb R \to \mathbb R [/mm]  d.h. die Menge

         [mm] \{ (x, f(x) ) \ \ \| \ \ x \in \mathbb R \} [/mm]

     betrachtet als Teilmenge von [mm] \mathbb R^2 [/mm].


Hallo alle zusammen!

Ich habe leider wieder ein Problem bei der Maßtheorie und wie man sowas zeigen kann :-(.

Das einzige , was mir einfällt ist, dass die Hyperebenen das Lebesque - Maß 0 haben. Also würde ich versuchen zu zeigen, dass diese beiden Mengen Hyperebenen bezüglich des [mm] \mathbb R^3 [/mm] oder [mm] \mathbb R^2 [/mm] darstellen um so zum Ergebnis zu kommen. Leider bin ich total ratlos, wie ich sowas zeigen kann, und ob das überhaupt der richtige Weg ist ???

Bitte um einen Tipp, wie ich an diese Aufgabe herangehen soll..

Danke im Vorraus!

Viele Grüße
Irmchen

        
Bezug
Nullmengen zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Mi 07.11.2007
Autor: koepper

Hallo Irmchen,

> Zeigen Sie, dass die folgenden Mengen bezüglich des
> Lebesque - Maßes im [mm]\mathbb R^3[/mm] beziehungsweise [mm]\mathbb R^3[/mm]
> Nullmengen sind.
>  
> (i) [mm]\{ (x,y,z) \in \mathbb R^3 \ \ \| \ \ x = y = z \} \\[/mm]
>  
> (ii)  Der Graph einer stetigen Abbildung [mm]f : \mathbb R \to \mathbb R[/mm]
>  d.h. die Menge
>  
> [mm]\{ (x, f(x) ) \ \ \| \ \ x \in \mathbb R \}[/mm]
>  
> betrachtet als Teilmenge von [mm]\mathbb R^2 [/mm].

Mache dir als erstes klar, daß man das Lebesgue-Maß anschaulich auch als Fläche (im [mm] $\IR^2$) [/mm] oder Volumen (im [mm] $\IR^3$) [/mm] deuten kann. Dann sind die Aussagen sofort klar.
  

> Das einzige , was mir einfällt ist, dass die Hyperebenen
> das Lebesque - Maß 0 haben. Also würde ich versuchen zu
> zeigen, dass diese beiden Mengen Hyperebenen bezüglich des
> [mm]\mathbb R^3[/mm] oder [mm]\mathbb R^2[/mm] darstellen um so zum Ergebnis
> zu kommen. Leider bin ich total ratlos, wie ich sowas
> zeigen kann, und ob das überhaupt der richtige Weg ist ???

Die erste Menge ist Teilmenge einer Hyperebene, und Teilmengen von Nullmengen sind wieder Nullmengen.
Suche also eine Hyperebene, die (i) enthält.

(ii) Hier würde ich im Zweifel die Definition des L-Maßes verwenden.

Gruß
Will

Bezug
                
Bezug
Nullmengen zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Mi 07.11.2007
Autor: Irmchen

Hallo Will !

Danke schonmal für die schnelle Antwort!!!

Mache dir als erstes klar, daß man das Lebesgue-Maß

> anschaulich auch als Fläche (im [mm]\IR^2[/mm]) oder Volumen (im
> [mm]\IR^3[/mm]) deuten kann. Dann sind die Aussagen sofort klar.

Also ich habe mir eine Skizze davon gemacht und gesehen, dass es sich bei (i) um eine Gerade im [mm] \mathbb R^3 [/mm] und bei (ii) um eine Gerade im [mm] \mathbb R^2 [/mm] handelt. Ist das so richtig?

  

> Die erste Menge ist Teilmenge einer Hyperebene, und
> Teilmengen von Nullmengen sind wieder Nullmengen.
>  Suche also eine Hyperebene, die (i) enthält.

Also: ich habe jetzt die Definition der Hyperebene etwas auf die Aufgabe angepasst und versuche es mal:

H ist eine affine Hyperebene von [mm] \mathbb R^3 [/mm], wenn es einen 2 - dimensionalen linearen Teilraum V von [mm] \mathbb R^3 [/mm] und  a [mm] \in \mathbb R^3 [/mm] gibt , mit  H = a + V [mm] = \{ a + v \ \| \ v \in V \} [/mm]

So, und wenn ich jetzt das folgendermaßen wähle:

[mm] \{ a + v \ \| \ v \in \mathbb R^3 mit z = 0 , a = \begin{pmatrix} x \\ y \\ z \end{pmatrix} mit x = y = z \} [/mm]

Ist dann meine Menge (i) in dieser Hyperebene???
Denn wenn ja, dann habe ich gezeigt, dann es sich um eine Nullmenge handelt...



> (ii) Hier würde ich im Zweifel die Definition des L-Maßes
> verwenden.

Diesen Tipp kann ich leider nicht umsetzten :-(. Kannst du mir nochmal genauer schreiben, was Du damit meinst...

Viele Grüße
Irmchen


Bezug
                        
Bezug
Nullmengen zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Do 08.11.2007
Autor: koepper

Hallo Irmchen,

> Also ich habe mir eine Skizze davon gemacht und gesehen,
> dass es sich bei (i) um eine Gerade im [mm]\mathbb R^3[/mm]

richtig.

>  und bei (ii) um eine Gerade im [mm]\mathbb R^2[/mm] handelt.

wie kommst du auf die Idee?
In der Aufgabe steht: der Graph einer stetigen reellen Funktion.
Das muß natürlich nicht notwendig eine Gerade sein.

> > Die erste Menge ist Teilmenge einer Hyperebene, und
> > Teilmengen von Nullmengen sind wieder Nullmengen.
>  >  Suche also eine Hyperebene, die (i) enthält.
>  
> Also: ich habe jetzt die Definition der Hyperebene etwas
> auf die Aufgabe angepasst und versuche es mal:
>  
> H ist eine affine Hyperebene von [mm]\mathbb R^3 [/mm], wenn es
> einen 2 - dimensionalen linearen Teilraum V von [mm]\mathbb R^3[/mm]
> und  a [mm]\in \mathbb R^3[/mm] gibt , mit  H = a + V [mm]= \{ a + v \ \| \ v \in V \}[/mm]

hmm... das ist zwar im Prinzip richtig, aber warum so kompliziert?
$H := [mm] \{(x, y, z) \in \IR^3 \mid ax + by + cz = 0 \}$ [/mm] ist eine Hyperebene im [mm] $\IR^3$ [/mm] für alle $a, b, c [mm] \in \IR.$ [/mm]

überlege jetzt bitte noch einmal,
wie du auf einfache Weise die Hyperebene angeben kannst,
in der die Menge aus (a) liegt.

> > (ii) Hier würde ich im Zweifel die Definition des L-Maßes
> > verwenden.

Eine Teilmenge N des [mm] $\IR^n$ [/mm] heißt Nullmenge (bzgl. des Lebesgue-Maßes), wenn es zu jedem [mm] $\epsilon [/mm] > 0$ eine höchstens abzählbare Menge von Quadern gibt, die N überdecken und deren Gesamtmaß kleiner als [mm] $\epsilon$ [/mm] wird.

Gruß
Will

Bezug
                                
Bezug
Nullmengen zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Do 08.11.2007
Autor: Irmchen

Hallo Will,
  
  
Natürlich muss das keine Gerade sein, hatte mich verguckt, sorry :-).



>  [mm]H := \{(x, y, z) \in \IR^3 \mid ax + by + cz = 0 \}[/mm] ist
> eine Hyperebene im [mm]\IR^3[/mm] für alle [mm]a, b, c \in \IR.[/mm]

Ich habe ein wenig das Probelem, dass ich nicht wirklich sehe, dass das eine Hyperebene ist. Warum ist das so???

> überlege jetzt bitte noch einmal,
>  wie du auf einfache Weise die Hyperebene angeben kannst,
>  in der die Menge aus (a) liegt.

Also, wenn ich jetzt  [mm] H := \{(x, y, z) \in \IR^3 \mid ax + by + cz = 0, \ mit a = b = c \}[/mm]  nehme, ist das dann richtig?


Gruß
Irmchen


Bezug
                                        
Bezug
Nullmengen zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Do 08.11.2007
Autor: koepper

Hallo Irmchen,

> >  [mm]H := \{(x, y, z) \in \IR^3 \mid ax + by + cz = 0 \}[/mm] ist

> > eine Hyperebene im [mm]\IR^3[/mm] für alle [mm]a, b, c \in \IR.[/mm]
>  
> Ich habe ein wenig das Probelem, dass ich nicht wirklich
> sehe, dass das eine Hyperebene ist. Warum ist das so???

Das ist Lineare Algebra 1, a, b, c dürfen dabei natürlich nicht alle gleich Null sein.
Mach dir vielleicht einfach ein Beispiel mit konkreten Werten für a,b,c
und suche nach den 2 Vektoren, die diesen Unterraum erzeugen.

> Also, wenn ich jetzt  [mm]H := \{(x, y, z) \in \IR^3 \mid ax + by + cz = 0, \ mit a = b = c \}[/mm]
>  nehme, ist das dann richtig?

du mußt schon konkrete Zahlen für a,b,c nennen.

Gruß
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]