matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesNullmatrix berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Sonstiges" - Nullmatrix berechnen
Nullmatrix berechnen < Sonstiges < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullmatrix berechnen: tipp
Status: (Frage) beantwortet Status 
Datum: 19:16 So 11.01.2009
Autor: juel

Aufgabe
A1)  Geben zwei Matrizen A und B  an, deren Produkte die  
                  Nullmatrix ist, die  
                  aber beide keine Nullmatrizen sind.

A2)  Bestimmen Sie zwei [mm] 3\times3 [/mm] Matrizen (nicht die Einheitsmatrizen),  
       deren Produkt die [mm] 3\times3 [/mm] Einheitsmatrix ist.


Hallo Zusammen

zu A1)

..glaube ich zu wissen wie man das rechnent , aber erklären und benennen kann ich es nicht. Könnte mir das jemand eklären?

bewiesen habe ich das so:  zB. ist  Matrix A= [mm] \pmat{ 1 & 2 \\ 3 & 4 } [/mm]

ich habe die Zeilen und Spalten durch das Wegstreichen vertauscht, ich glaube die Regel heißt ''Laplacescher Entwicklungssatz'', weiß nicht genau.

Auf jeden Fall kam bei mir für  B= [mm] \pmat{ 4 & -3 \\ -2 & 1 } [/mm]  heraus

und wenn ich dann A und B Matrizen multipliziere bekomme ich eine 0-Matrix raus.

Kann mir das jemand genau erklären, hab das nämlich durch ausprobieren heraus gefunden.


zu A2)
              wenn   A [mm] \* [/mm] E = A

dann ist    [mm] A^{-1} \* [/mm] A = E

wenn ich aber mit Zahlen nach dieser Formel rechne bekomme ich keine Einheitsmatrix heraus. Stimmt die zweite Formel überhaupt.


Danke im Voraus



        
Bezug
Nullmatrix berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 So 11.01.2009
Autor: M.Rex

Hallo

> A1)  Geben zwei Matrizen A und B  an, deren Produkte die  
> Nullmatrix ist, die  
> aber beide keine Nullmatrizen sind.
>  
> A2)  Bestimmen Sie zwei [mm]3\times3[/mm] Matrizen (nicht die
> Einheitsmatrizen),  
> deren Produkt die [mm]3\times3[/mm] Einheitsmatrix ist.
>  
> Hallo Zusammen
>  
> zu A1)
>  
> ..glaube ich zu wissen wie man das rechnent , aber erklären
> und benennen kann ich es nicht. Könnte mir das jemand
> eklären?
>  
> bewiesen habe ich das so:  zB. ist  Matrix A= [mm]\pmat{ 1 & 2 \\ 3 & 4 }[/mm]
>  
> ich habe die Zeilen und Spalten durch das Wegstreichen
> vertauscht, ich glaube die Regel heißt ''Laplacescher
> Entwicklungssatz'', weiß nicht genau.
>  
> Auf jeden Fall kam bei mir für  B= [mm]\pmat{ 4 & -3 \\ -2 & 1 }[/mm]
>  heraus
>  
> und wenn ich dann A und B Matrizen multipliziere bekomme
> ich eine 0-Matrix raus.
>  
> Kann mir das jemand genau erklären, hab das nämlich durch
> ausprobieren heraus gefunden.
>  

Das reicht doch. Es gibt solche Matrizen. Und ein "Modell" hast du ja mitgegeben.

>
> zu A2)
>                wenn   A [mm]\*[/mm] E = A
>  
> dann ist    [mm]A^{-1} \*[/mm] A = E

Sofern man [mm] A^{-1} [/mm] überhaupt ermitteln kann gilt [B]immer[/B]
[mm] A^{-1}*A=E [/mm]

>  
> wenn ich aber mit Zahlen nach dieser Formel rechne bekomme
> ich keine Einheitsmatrix heraus. Stimmt die zweite Formel
> überhaupt.
>  
>
> Danke im Voraus
>  
>  

Marius

Bezug
                
Bezug
Nullmatrix berechnen: Lösung stimmt nicht
Status: (Frage) beantwortet Status 
Datum: 21:22 So 11.01.2009
Autor: juel

die Aufgabe 1  stimmt nicht, habs grad für eine andere Matrix ausgerechnen und da kam keine Nullmatrix als Ergebnis.

hier:
           A = [mm] \pmat{ 2 & 6 \\ 4 & 3 } [/mm]


Invertiert  =>  kommt raus   B = [mm] \pmat{ 3 & -4 \\ -6 & 2 } [/mm]

  A und B Matrizen multipliziert , kommt  keine Nullmatrix heraus (das, was ich eigentlich haben möchte), sondern

                        [mm] \pmat{ -30 & 4 \\ -6 & -10 } [/mm]


wie rechne ich jetzt die Nullmatrix aus???

Kann mir bitte jemand helfen?

Bezug
                        
Bezug
Nullmatrix berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 So 11.01.2009
Autor: reverend

zu A1)

Nehmen wir erst einmal an, wir haben zwei Matrizen A,B, die beide nicht die Nullmatrix O sind. Können sie invertierbar sein?

Wenn [mm] A^{-1} [/mm] existiert, dann folgt aus [mm] A\times \a{}B=O \Rightarrow A^{-1}\times A\times B=A^{-1}\times \a{}O \Rightarrow \a{}B=O. [/mm] Widerspruch.
Ebenso für [mm] A\times B\times B^{-1} [/mm]

Das ist doch schonmal ein Hinweis. Die Matrizen sind beide nicht invertierbar.

Konstruieren wir also einfache Matrizen, deren Determinante 0 ist. Wegen der Definition der Matrizenmultiplikation am besten erst einmal so, dass [mm] a_{1,1} [/mm] der Ergebnismatrix 0 wird:

[mm] \pmat{ 1 & 2 & 3 \\ ? & ? & ? \\ ? & ? & ?} \times \pmat{ 2 & ? & ? \\ 2 & ? & ? \\ -2 & ? & ? }= \pmat{ 0 & ? & ? \\ ? & ? & ? \\ ? & ? & ? } [/mm]

In der linken Matrix fügen wir nun linear abhängige Zeilen hinzu:

[mm] \pmat{ 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9} \times \pmat{ 2 & ? & ? \\ 2 & ? & ? \\ -2 & ? & ? }= \pmat{ 0 & ? & ? \\ 0 & ? & ? \\ 0 & ? & ? } [/mm]

... und in der rechten Matrix linear abhängige Spalten:

[mm] \pmat{ 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9} \times \pmat{ 2 & -1 & 4 \\ 2 & -1 & 4 \\ -2 & 1 & -4 }= \pmat{ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 } [/mm]

Das funktioniert natürlich auch mit nicht-quadratischen Matrizen.

zu A2)

Nimm eine invertierbare Matrix, z.B. [mm] \pmat{ 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2} [/mm]

Diese hier hat die Determinante 1, das ist ganz praktisch...

Bestimme die Inverse (zur Kontrolle: sie enthält zweimal die 0, zweimal die 1, einmal die 3, und viermal die -1).

Dann bist Du doch schon fertig.

Vielleicht hilft Dir auch dieser []Matrizenrechner, aber Du solltest ihn erst benutzen, wenn Du die Rechnungen (incl. der Inversen!) tatsächlich auch "zu Fuß" beherrschst.

lg,
reverend

Bezug
                                
Bezug
Nullmatrix berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 So 11.01.2009
Autor: juel

hallo

danke für die Antwort, die Aufgabe 2 kann ich mitlerweile, habe ein paar Aufgaben gerechnent. Mir ist nur die 1. Aufgabe noch nicht ganz klar.

> Konstruieren wir also einfache Matrizen, deren Determinante
> 0 ist. Wegen der Definition der Matrizenmultiplikation am
> besten erst einmal so, dass [mm]a_{1,1}[/mm] der Ergebnismatrix 0
> wird:
>  
> [mm]\pmat{ 1 & 2 & 3 \\ ? & ? & ? \\ ? & ? & ?} \times \pmat{ 2 & ? & ? \\ 2 & ? & ? \\ -2 & ? & ? }= \pmat{ 0 & ? & ? \\ ? & ? & ? \\ ? & ? & ? }[/mm]
>  
> In der linken Matrix fügen wir nun linear abhängige Zeilen
> hinzu:
>  
> [mm]\pmat{ 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9} \times \pmat{ 2 & ? & ? \\ 2 & ? & ? \\ -2 & ? & ? }= \pmat{ 0 & ? & ? \\ 0 & ? & ? \\ 0 & ? & ? }[/mm]
>  
> ... und in der rechten Matrix linear abhängige Spalten:
>  
> [mm]\pmat{ 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9} \times \pmat{ 2 & -1 & 4 \\ 2 & -1 & 4 \\ -2 & 1 & -4 }= \pmat{ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 }[/mm]


Woher weiß ich welche Zahlen ich in den zwei Matrizen einsetzen soll um eine 0-Matrix heraus zu bekommen???


Bezug
                                        
Bezug
Nullmatrix berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 So 11.01.2009
Autor: reverend

Das habe ich doch recht detailliert geschrieben, oder?

Wie Du zum ersten, beliebig gegriffenen Zeilenvektor der linken Matrix, hier bei mir einfach (1 2 3), einen Spaltenvektor für die rechte Matrix findest, der die Bedingung erfüllt, ist doch ein einfaches Problem der Vektorrechnung: finde zu einem gegebenen [mm] \vec{s} [/mm] ein [mm] \vec{z}, [/mm] so dass [mm] \vec{s}\cdot\vec{z}=0 [/mm] ist.

Bei so kleinen Zahlen wie meinen geht das aber meist ohne lange Rechnung. Wähle sie einfach übersichtlich.

z.B. (1 4 3) [mm] \rightarrow [/mm] da könnte man mal versuchsweise die 4 mit 2 multiplizieren und davon so 3 mal die 3 abziehen, dann muss man ja nur noch die 1 mit einem passenden Faktor versehen. Oder man könnte erst die 3 mit 5 multiplizieren und davon 3 mal die 4 abziehen und dann wieder die 1 zum Ausgleich benutzen oder ... oder ... oder ...

lg,
rev

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]