matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteNullfolge?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Nullfolge?
Nullfolge? < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullfolge?: überprüfen?
Status: (Frage) beantwortet Status 
Datum: 16:58 Mi 28.12.2011
Autor: PeterSteiner

Wie überprüfe ich ob (1+1/n) eine Nullfolge ist?

Der Grenzwert davon ist ja 1, kann ich dann sagen das sie konvergiert?

        
Bezug
Nullfolge?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mi 28.12.2011
Autor: M.Rex


> Wie überprüfe ich ob (1+1/n) eine Nullfolge ist?
>  
> Der Grenzwert davon ist ja 1,

Was heisst denn diese richtige Tatsache bezüglich deiner Anfrage?

> kann ich dann sagen das sie konvergiert?

Ja, wenn die Folge einen Grenzwert hat, konvergiert sie gegen diesen.

Marius


Bezug
                
Bezug
Nullfolge?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Mi 28.12.2011
Autor: PeterSteiner

[mm] \summe_{n=1}^{\infty}(-1)^n(1+1/n) [/mm]

Leibnitzkriterium:
[mm] (-1)^n [/mm] alternierende Reihe.

an=(1+1/n), damit  die Reihe konvergiert muss an eine monoton fallende Nullfolge sein, das gilt zu überprüfen,nur da haakts :(

Bezug
                        
Bezug
Nullfolge?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Mi 28.12.2011
Autor: M.Rex

Hallo

Du hast doch den Grenzwert der Folge korrekterweise mit 1 bestimmt. Überlege nun nochmal ganz scharf, was das für die Frage nach einer Nullfolge bedeutet.

Marius


Bezug
                                
Bezug
Nullfolge?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Mi 28.12.2011
Autor: PeterSteiner

:)) dann handelt es sich dabei natürlich nicht um eine nullfolge :-D somit divergiert die reihe oder
?

Bezug
                                        
Bezug
Nullfolge?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mi 28.12.2011
Autor: schachuzipus

Hallo PeterSteiner,

Edit: Wer lesen kann, ist im Vorteil:

ich habe deinen 2. post völlig übersehen - sorry


> :)) dann handelt es sich dabei natürlich nicht um eine
> nullfolge :-D [ok] somit divergiert die reihe oder
>  ?


Ganz recht, das Trivialkriterium ist verletzt, es ist [mm] $\left((-1)^n(1+1/n)\right)_{n\in\IN}$ [/mm] keine Nullfolge, damit kann [mm] $\sum_n(-1)^n(1+1/n)$ [/mm] nicht konvergent sein.


Edit Ende



Gruß

schachuzipus


Bezug
                                                
Bezug
Nullfolge?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 Mi 28.12.2011
Autor: PeterSteiner

Danke an alle!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]