matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenNullabildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Nullabildung
Nullabildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullabildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 Mi 21.11.2007
Autor: Caroline

Hallo Leute, habe ein Problem bei folgender Aufgabe:

F: [mm] \IR^{n} [/mm] --> [mm] \IR^{n} [/mm] selbstadjungiert und nilpotente lineare Abbildung.
Dann ist F = 0.

Also ich weiß was die ganzen Begriffe bedeuten, selbstadjungiert und nilpotent, aber es hilft mir nichts weiter...

Ich hoffe ihr könnt mir weiterhelfen

LG

Caro

        
Bezug
Nullabildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Mi 21.11.2007
Autor: wieZzZel

Hallo...

Da f selbstadjungiert ist weist du ja, dass die Matrixdarstellung von f: [mm] F=F^T [/mm]

Da f nilpotent ist, ist F ähnlich zu einer Dreiecksmatrix, wobei auf der Diagonalen nur Nullen stehen (da 0 einziger Eigenwert oder auch det(F)=0)...

[mm] \Rightarrow [/mm] somit muss F=0 und somit [mm] f\equiv0 [/mm] sein, da [mm] F=F^T [/mm]

Tschüß sagt Röby

Bezug
                
Bezug
Nullabildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Mi 21.11.2007
Autor: Caroline

mmh ja klingt sehr logisch und gar nicht mal so schwer, der trick ist, dass man sagt die Matrix ist dann ähnlich zu einer Dreiecksmatrix, allerdings haben wir sowas nicht in der Vorlesung gemacht, wie kann ich dies zeigen bzw. warum ist dies so, dass eine nilpotente matrix ähnlich zu einer dreiecksmatrix ist? es klingt zwar logisch, da für eine dreiecksmatrix mit 0en in der Diagonalen (hab ich oben vergessen dazuzusagen) sich alle Einträge immer nach rechts bzw. nach links verschieben und irgendwann "weg" sind, aber woran sehe ich, dass eine beliebige nilpotente Matrix ähnlich zu einer Dreiecksmatrix ist?

LG

Caro


EDIT:

Eigener Versuch:

Kann ich folgendes machen:

Da [mm] A^{k} [/mm] = 0 => A hat nur einen Eigenwert, nämlich 0, ansonsten dürfte beim k-fachen Potenzieren nicht die Nullmatrix herauskommen... Das heißt die Jordannormalfor von A ist eine Dreiecksmatrix mit nur 0en auf der Diagonalen und dies bedeutet, da A (trivialerweise ;-) wollte ich immer schon mal sagen) zu ihrer JNF ähnlich ist gilt auch für die Jordannormalform J = [mm] J^{t} [/mm] und somit muss J die Nullmatrix sein bzw. auch A...


LG

Caro

Bezug
                        
Bezug
Nullabildung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Mi 21.11.2007
Autor: wieZzZel

Hallo Caro...

Soweit richtig, da F nilpotent ist, weist du dass 0 der einzige EW ist...

Und damit hast du es: Somit muss F ähnlich zu einer Dreicksmatrix sein (da F nilpotent), auf deren Diagonalen nur Nullen stehen...


Tschüß sagt Röby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]