matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNull-, Polstellen, Asymptoten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Null-, Polstellen, Asymptoten
Null-, Polstellen, Asymptoten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Null-, Polstellen, Asymptoten: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:21 Di 30.01.2007
Autor: Mone25

Aufgabe
Untersuchen Sie die Funktion auf Nullstellen, Polstellen und Asymptoten. Berechnen Sie auch noch zusätzlich den Funktionswert f(0).

f: x -> [mm] \bruch{2x-5}{x-3} [/mm]

Hallo,
ich rechne nun die Aufgabe schon x-mal, aber irgendwie bin ich mir recht unsicher, ob das alles stimmt, wie ich's angehe. Also...

...f: x -> 2x-5 / x-3 ; Df=R \ {3}

Nullstellen:  
             0=2x-5 / x-3
             0=(2x-5):(x-3) |*(x-3)
             0=2x-5         |+5
             5=2x           |:2
             x=2,5  <-- 1. Nullstelle

   0=(2x-5):(x-3)
   0=2x+ 5/3       |-5/3
-5/3=2x            |:2
   x=-5/6            <-- 2. Nullstelle

Asymptotisches Verhalten:

[mm] \limes_{x\rightarrow\infty} \bruch{2x-5}{x-3} [/mm]

                           [mm] \bruch{x}{x}* \bruch{2-5}{-3}= [/mm]
                          
                            = [mm] \bruch{-3}{-3}= [/mm]

                            =1

Funktionswert f(0):

f(x) = 2x-5 / x-3
f'(x)= 2/1
0 = 2



Soweit bin ich gekommen...hoffentlich sind die Lösungsschritte verständlich!

Über jede Hilfe und jeden Hinweis bin ich dankbar!

LG,
Mone

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
            
            

        
Bezug
Null-, Polstellen, Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Di 30.01.2007
Autor: M.Rex

Hallo

> Untersuchen Sie die Funktion auf Nullstellen, Polstellen
> und Asymptoten. Berechnen Sie auch noch zusätzlich den
> Funktionswert f(0).
>  
> f: x -> [mm]\bruch{2x-5}{x-3}[/mm]
>  Hallo,
> ich rechne nun die Aufgabe schon x-mal, aber irgendwie bin
> ich mir recht unsicher, ob das alles stimmt, wie ich's
> angehe. Also...
>  
> ...f: x -> 2x-5 / x-3 ; Df=R \ {3}
>  
> Nullstellen:  
> 0=2x-5 / x-3
>               0=(2x-5):(x-3) |*(x-3)
>               0=2x-5         |+5
>               5=2x           |:2
>               x=2,5  <-- 1. Nullstelle

Korrekt, aber das ist auch die einzige Nullstelle. Der Bruch wird dann gleich Null, wenn der Zähler Null wird.

>  
> 0=(2x-5):(x-3)
>     0=2x+ 5/3       |-5/3
>  -5/3=2x            |:2
>    x=-5/6            <-- 2. Nullstelle

Nee, siehe oben.

>  
> Asymptotisches Verhalten:
>
> [mm]\limes_{x\rightarrow\infty} \bruch{2x-5}{x-3}[/mm]
>  
> [mm]\bruch{x}{x}* \bruch{2-5}{-3}=[/mm]

Das funktioniert so nicht. Du kannst den Brich nicht so auflösen.
                            

> = [mm]\bruch{-3}{-3}=[/mm]
>  
> =1

Um die Asymptote herauszufinden, musst du den Zähler durch den Nenner teilen, also die Polynomdivision machen. Also:

[mm] (2x-5):(x-3)=\red{2}+\bruch{1}{x-3} [/mm]

Der rot markierte, nicht gebrochen-rationale Teil ist die Asymptote, also y=2.
Begründung:

=
[mm] \limes_{x\rightarrow\infty}{\bruch{2x-5}{x-3}} [/mm]
[mm] =\limes_{x\rightarrow\infty}{2+\bruch{1}{x-3}} [/mm]
[mm] =\limes_{x\rightarrow\infty}{2}+\limes_{x\rightarrow\infty}{\bruch{1}{x-3}} [/mm]
=2+0
=2

>
> Funktionswert f(0):
>
> f(x) = 2x-5 / x-3
>  f'(x)= 2/1
>  0 = 2

Was willst du damit sagen. Wozu die Ableitung.

[mm] f(0)=\bruch{2+0-5}{0-3}=\bruch{5}{3} [/mm]


>


Du hast noch die Polstellen, also die Nullstellen des Nenners vergessen.

>
>
> Soweit bin ich gekommen...hoffentlich sind die
> Lösungsschritte verständlich!
>  
> Über jede Hilfe und jeden Hinweis bin ich dankbar!
>  
> LG,
>  Mone
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>              
>  

Marius

Bezug
                
Bezug
Null-, Polstellen, Asymptoten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 So 04.02.2007
Autor: Mone25

Hallo Marius,

vielen lieben Dank für deine Korrekturlesung und die Hinweise! Ich werd mir jetzt nochmal alles in Ruhe anschauen, und vielleicht klappts ja dann.

LG, Mone

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]