matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikNukleare Reaktionskinetik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "HochschulPhysik" - Nukleare Reaktionskinetik
Nukleare Reaktionskinetik < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nukleare Reaktionskinetik: Tipp
Status: (Frage) überfällig Status 
Datum: 19:00 Do 14.03.2013
Autor: Bangada

Aufgabe
6.1. Use euqation (6-5a) or (6-5b) to calculate k(T) given the following forms for the reactive cross section:
k(T)= [mm] (\bruch{\mu}{2 \pi k_{B} T})^{\bruch{3}{2}} \integral_{0}^{\infty}{v \sigma_{R}(v) e^{-\mu v^2 / 2k_B T} 4 \pi v^2 dv} [/mm]   (6-5a)
Substituting the realtive kinetic energy E= 1/2 [mm] \mu v^2 [/mm] results in the form
k(T)= [mm] (\bruch{1}{k_{B} T}) (\bruch {8}{\mu \pi k_{B} T})^{\bruch{1}{2}} \integral_{0}^{\infty}{E \sigma_{R}(E) e^{-E / k_B T} dE} [/mm]   (6-5b)

a) [mm] \sigma_{R}(v)= \pi d^2 [/mm] , i.e., a constant. If d is the molecular diameter, this represents an "encounter limited rate coefficient".
b) [mm] \sigma_{R}(E) [/mm] = [mm] \sigma_0 (1-e^{- a E}) [/mm]
c) [mm] \sigma_{R}(E) [/mm] = [mm] \sigma_0 (1-e^{- a (E-E_0)}) [/mm] where [mm] E_0 [/mm] > 0 represents a minimum energy threshold for the reaction. Take [mm] \sigma_R [/mm] (E) = 0 for E < [mm] E_0 [/mm]
d) [mm] \sigma_{R} [/mm] (v) = [mm] \sigma_0 [/mm] exp(-A / v)  Let exp(-A/v)= 1-A/v
Do any of these calculated k's have an Arrehnius-like tmeperature dependence?



8.2. Gas viscosity is given by
[mm] \eta [/mm] = [mm] \bruch{5\pi}{32\wurzel{2}} \bruch{\mu v}{Q} [/mm]
[R.D. Present, Kinetic Theory of Gases, New-York: McGraw-Hill 1958], where the average velocity v= (8 [mm] k_B [/mm] T / [mm] \pi \mu)^{1/2}, \mu [/mm] is the collision-reduced mass, and Q
Q= [mm] \bruch{1}{32} (\bruch {\mu}{2k_b T})^4 \integral_{0}^{\infty}{dv} \integral_{0}^{2\pi}{d \phi} \integral_{0}^{\pi}{d\theta sin^3 \theta I (\theta) v^7 exp (- \bruch {\mu v^2}{4 k_B T})} [/mm]
Given that the differential cross section of a hard sphere of diameter d is [mm] I(\theta)= d^2 [/mm] /4, find the viscosity of a gas of hard spheres.



8.8. Consider a reaction between two diluted species in an inert gas. and assume that only one initial and one final state are involved. The rate coefficient is then related to the total cross section by
k= 8 [mm] \pi \mu {}^{-1/2} [/mm] (2 [mm] \pi k_B T)^{-3/2} \integral_{0}^{\infty}{E \sigma (E) e^{(-E/k_B T)} dE} [/mm]
The "old-collision-theory" cross section is
[mm] \sigma [/mm] (E) = 0   If [mm] E [mm] \sigma [/mm] (E) = [mm] \pi d^2 [/mm] (1- [mm] \bruch{E_0}{E}) [/mm] if [mm] \ge E_0 [/mm]

a) Evaluate k for T= 1000,1500 and 2000 K for a system where [mm] \mu [/mm] = 10 daltons, d= 0.1 nm and [mm] E_0 [/mm] = 100 kJ [mm] mol^{-1}. [/mm] Let k have units [mm] m^3/s [/mm]
b) Plot your three values from a) on an Arrhenius plot and comment. From the slope of your plot getermine [mm] E_a. [/mm]




Guten Tag liebe Community,
Ich habe im Task-Fenster drei Aufgaben gestellt, die mir ans Herz gelegt wurden zu lösen. Alle drei sind Übungsaufgaben aus "Jeffrey I. Steinfeld et. al. - Chemical reactions and dynamics". Meine Vorlesung hat die Herangehensweise an solche Aufgaben nicht behandelt und die entsprechende Literatur ist in meiner Bibliothek nicht vorhanden, um die vorhergehende Theorie zu den Aufgaben aufzufrischen (gibt es eine digitale online Version dieses Buches?). Ich bitte an dieser Stelle nach keiner Lösung, sondern nur nach dem ersten Schritt der zu tun ist.
In Aufgabe 6.1 soll man aus zwei gegebenen Gleichungen unter verschiedenen Bedingungen die Temperaturabhängige Reaktionskonstante ermitteln.
In 8.2 soll die Viskosität von einem Gas ermittelt werden, welches aus 'harten Kugeln' besteht.
8.8 fordert das Errechnen der Reaktionskonstante und Plotten einer Arrheniuskurve.
In allen drei Fällen weiß ich nicht wie ich an das Integral heran gehen soll , um es zu lösen!!!
Ich hoffe Ihr könnt mir einen kleinen Denkanstoß geben.

Mit freundlichen Grüßen,
Bangada

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.chemieonline.de/forum/showthread.php?t=204775
jedoch bisher ohne Hilfestellung.

        
Bezug
Nukleare Reaktionskinetik: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 22.03.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]