matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieNotation Verständnis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - Notation Verständnis
Notation Verständnis < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Notation Verständnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 Mi 22.10.2014
Autor: James90

Guten Tag, ich habe eine Problem mit der Notation und hoffe auf eure Hilfe.

Wenn F eine Sigma-Algebra auf X ist, dann wird das Tupel (X,F) als messbarer Raum modifiziert und die Elemente von F heißen messbare Mengen.

Jetzt schreibe ich die Definition einer Nullmenge auf, damit ich mein Problem besser beschreibe.

Sei [mm] (X,F,\mu) [/mm] ein Maßraum. Eine Menge [mm] $A\subseteq [/mm] X$ heißt [mm] \mu [/mm] Nullmenge, falls es ein [mm] $F'\in [/mm] F$ gibt mit [mm] \mu(F')=0 [/mm] und [mm] $A\subseteq [/mm] F$.

Meine Frage: F ist ein Mengensystem. Wieso ist [mm] $A\subseteq [/mm] F$ und nicht [mm] $A\in [/mm] F$?

Dieses Problem finde ich leider immer wieder vor und das geht mir einfach nicht mehr aus dem Kopf und brauche eure Hilfe. Vielen Dank!

        
Bezug
Notation Verständnis: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Mi 22.10.2014
Autor: justdroppingby

Hallo,

> Guten Tag, ich habe eine Problem mit der Notation und hoffe
> auf eure Hilfe.
>  
> Wenn F eine Sigma-Algebra auf X ist, dann wird das Tupel
> (X,F) als messbarer Raum modifiziert und die Elemente von F
> heißen messbare Mengen.
>  
> Jetzt schreibe ich die Definition einer Nullmenge auf,
> damit ich mein Problem besser beschreibe.
>  
> Sei [mm](X,F,\mu)[/mm] ein Maßraum. Eine Menge [mm]A\subseteq X[/mm] heißt
> [mm]\mu[/mm] Nullmenge, falls es ein [mm]F'\in F[/mm] gibt mit [mm]\mu(F')=0[/mm] und
> [mm]A\subseteq F[/mm].

Ich hege den starken Verdacht, dass sich hier mind. ein (Tipp)Fehler eingschlichen hat.
Denn so ein F' gibt es immer: die leere Menge.
Ich vermute es soll  [mm]A\subseteq F'[/mm] heißen,

> Meine Frage: F ist ein Mengensystem. Wieso ist [mm]A\subseteq F[/mm]
> und nicht [mm]A\in F[/mm]?

> Dieses Problem finde ich leider immer wieder

Wo?

> vor und das
> geht mir einfach nicht mehr aus dem Kopf und brauche eure
> Hilfe. Vielen Dank!


Bezug
                
Bezug
Notation Verständnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Mi 22.10.2014
Autor: James90

Danke für die rasche Antwort!

> > Sei [mm](X,F,\mu)[/mm] ein Maßraum. Eine Menge [mm]A\subseteq X[/mm] heißt
> > [mm]\mu[/mm] Nullmenge, falls es ein [mm]F'\in F[/mm] gibt mit [mm]\mu(F')=0[/mm] und
> > [mm]A\subseteq F[/mm].

>  Ich hege den starken Verdacht, dass sich
> hier mind. ein (Tipp)Fehler eingschlichen hat.
>  Denn so ein F' gibt es immer: die leere Menge.
>  Ich vermute es soll  [mm]A\subseteq F'[/mm] heißen,

Tut mir leid für den Tippfehler. Meine Frage bleibt erhalten:
F ist ein Mengensystem. Wieso ist [mm]A\subseteq F'[/mm] und nicht [mm]A\in F'[/mm]?

Bezug
                        
Bezug
Notation Verständnis: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Mi 22.10.2014
Autor: justdroppingby


> Danke für die rasche Antwort!
>  
> > > Sei [mm](X,F,\mu)[/mm] ein Maßraum. Eine Menge [mm]A\subseteq X[/mm] heißt
> > > [mm]\mu[/mm] Nullmenge, falls es ein [mm]F'\in F[/mm] gibt mit [mm]\mu(F')=0[/mm] und
> > > [mm]A\subseteq F[/mm].
>  
> >  Ich hege den starken Verdacht, dass sich

> > hier mind. ein (Tipp)Fehler eingschlichen hat.
>  >  Denn so ein F' gibt es immer: die leere Menge.
>  >  Ich vermute es soll  [mm]A\subseteq F'[/mm] heißen,
>  
> Tut mir leid für den Tippfehler. Meine Frage bleibt
> erhalten:

Tut sie eigentlich nicht.
Und mir scheint das kein Tippfehler zu sein, sondern das eigentliche Problem.

>  F ist ein Mengensystem. Wieso ist [mm]A\subseteq F'[/mm] und nicht
> [mm]A\in F'[/mm]?

F ist ein Mengensystem, F' ist eine Menge.
Und F kommt in deiner Frage nicht vor.


Bezug
                                
Bezug
Notation Verständnis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:28 Mi 22.10.2014
Autor: James90

Viele Dank, du hast mir die Augen geöffnet!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]