matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikNormierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "mathematische Statistik" - Normierung
Normierung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Do 20.05.2010
Autor: Irmchen

Guten Tag alle zusammen!

Ich beschäftige mich gerade mit der Subsampling - Methode und bin auf eine Normierungskonstante gestoßen, die mich etwas verwirrt... Vorab ein paar Infos:

Gegeben [mm] X_1,... , X_n [/mm] i.i.d. nach P auf [mm] ( \Omega, \mathcal A ) [/mm] mit Werten in einem Zielraum [mm] S \subset \mathbb R [/mm]
Sei [mm] \hat{ \theta} _n = \hat{ \theta} _n ( X_1,... , X_n ) [/mm] ein Schätzer  für einen unbekannten reellen Parameter [mm] \theta (P) [/mm].
Ziel des Subsampling-Verfahren ist die Konstriúktion  eines Konfidenzintervalls für [mm] \theta (P) [/mm] zu ermöglichen. Um Aussagen über [mm] \theta (P) [/mm] er erhalten, ist wünschenwert die Stichprobenverteilung von [mm] \hat{ \theta} _n [/mm] zu schätzen .

So definiert man :

[mm] [mm] \tau_n [/mm] ( [mm] \hat{ \theta} _n (X) - \theta (P) ) [/mm] ,

wobei [mm] \tau_n [/mm] geeignete nicht-negative Normierungskonstante ist!

Meine Frage:

Welchen nutzen hat diese???
Das einzige Grund, den ich kenne, ist  die Skalierung  des Wertebereichs  auf einen bestimmten Bereich, üblicherweise zwischen 0 und 1 (bzw. 100 Prozent).

Richtig?


Viele Dank!
Viele Grüße
Irmchen

        
Bezug
Normierung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Do 20.05.2010
Autor: luis52

Moin Irmchen,

$ [mm] \tau_n [/mm] $ koennte so gewaehlt sein, dass $ [mm] \tau_n (\hat{ \theta} [/mm] _n (X) - [mm] \theta [/mm] (P) ) $ eine von [mm] $\theta(P)$ [/mm] unabhaengige Verteilung besitzt.

Ist beispielsweise [mm] $X_1,\dots,X_n$ [/mm] eine Stichprobe aus einer Normalverteilung mit [mm] $\operatorname{E}[X]=\mu$ [/mm] und  [mm] $\operatorname{Var}[X]=\sigma^2$, [/mm] so ist $ [mm] \tau_n [/mm] ( [mm] \hat{ \theta} [/mm] _n (X) - [mm] \theta [/mm] (P) ) $ standardnormalverteilt fuer $ [mm] \hat{ \theta} [/mm] _n (X) [mm] =\bar [/mm] X$, [mm] $\theta (P)=\mu [/mm] $ und $ [mm] \tau_n=\sqrt{n}/\sigma$. [/mm]

vg Luis

Bezug
                
Bezug
Normierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:17 Do 20.05.2010
Autor: Irmchen

Hallo Luis!

Vielen herzlichen Dank für die schnell Antwort!

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]