matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisNormierte Vektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Normierte Vektorräume
Normierte Vektorräume < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normierte Vektorräume: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:50 Fr 29.04.2005
Autor: Esra

Hi

Sei V ein mormierter Vektorraum, und sei v ein Vektor mit  [mm] \parallel [/mm] v [mm] \parallel [/mm] < 1. Zeigen sie : Die Abbildung
V [mm] \to [/mm] V, x [mm] \mapsto [/mm] x + [mm] \parallel [/mm] x [mm] \parallel [/mm] v
ist bijektiv
ich weiß dass ich bie surjektivitat und injektivität zeigen  muss
aber nicht weiss wie ich es machen muss
hoffe einer kann mir weiter helfen
DANKE
:-)

        
Bezug
Normierte Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Sa 30.04.2005
Autor: Stefan

Hallo Esra!

Ich zeige schon einmal die Injektivität:

Aus

[mm] $x+\Vert [/mm] x [mm] \Vert [/mm] v = y + [mm] \Vert [/mm] y [mm] \Vert [/mm] v$

folgt:

$x-y = [mm] (\Vert [/mm] y [mm] \Vert [/mm] - [mm] \Vert [/mm] x [mm] \Vert)v$, [/mm]

also im Falle [mm] $\Vert [/mm] x - y [mm] \Vert>0$: [/mm]

[mm] $\Vert [/mm] x - y [mm] \Vert [/mm] = [mm] |\Vert [/mm] y [mm] \Vert [/mm] - [mm] \Vert [/mm] x [mm] \Vert| \cdot \Vert [/mm] v [mm] \Vert [/mm] < [mm] |\Vert [/mm] y [mm] \Vert [/mm] - [mm] \Vert [/mm] x [mm] \Vert| \le \Vert [/mm] x - [mm] y\Vert$, [/mm]

wobei im letzten Schritt die umgekehrte Dreiecksungleichung angewendet wurde. Diese Ungleichung stellt einen Widerspruch dar.

Also muss [mm] $\Vert [/mm] x-y [mm] \Vert=0$ [/mm] gelten und somit $x=y$.

Viele Grüße
Stefan



Bezug
        
Bezug
Normierte Vektorräume: Surjektivität
Status: (Frage) beantwortet Status 
Datum: 19:04 Sa 30.04.2005
Autor: Domi81

Wie kann ich denn die Surjektivität überprüfen? Muss ich eine Fallunterscheidung machen für x>0 und x<0 wenn ich den Fall für  IR beschränke?


Bezug
                
Bezug
Normierte Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Sa 30.04.2005
Autor: Max

Hallo Domi,

dir ein herzliches
[willkommenmr]

> Wie kann ich denn die Surjektivität überprüfen? Muss ich
> eine Fallunterscheidung machen für x>0 und x<0 wenn ich den
> Fall für  IR beschränke?

Da es sich bei [mm] $x\in [/mm] V$ um einen Vektor handelt, weiß ich nicht was du mit $x>0$ bzw. $x<0$ meinst? Oder meintest du [mm] $V=\IR$? [/mm] Aber das ist ja nicht in der Aufgabenstellung vorgegeben.

Surjekiv: Eine Funktion $f: V [mm] \to [/mm] V$ heißt surjektiv, wenn  [mm] $\forall y\in [/mm] V  [mm] \exists [/mm] x [mm] \in [/mm] V: f(x)=y$.

Jetzt musst du begründen, warum dies der Fall ist.

Gruß Max





Bezug
                        
Bezug
Normierte Vektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Sa 30.04.2005
Autor: Domi81

Ich danke dir, Max. Ich meinte mit x eigentlich einen Vektor aus IR. Ich danke Dir für deine Antwort. War ein wenig verwirrt. Vielleicht hast Du ja einen Tipp zur Aufgabe mit dem Beschränkten Vektorraum  unter "Beschränktheit". Grüße aus der schwarz-gelben Metropole...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]