matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNormen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Normen
Normen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normen: 1-Norm, Maximumsnorm
Status: (Frage) beantwortet Status 
Datum: 18:49 Sa 27.01.2007
Autor: Quetzcoatl

Aufgabe
Zeigen Sie, dass durch

           [mm] \parallel [/mm] x [mm] \parallel_{1} [/mm] = [mm] |x_{1}| [/mm] + [mm] |x_{2}| \qquad \forall [/mm] x = [mm] (x_{1} [/mm] + [mm] x_{2}) \in \mathbf{R}^2 [/mm]

eine Norm über [mm] \mathbf{R}^2 [/mm] definiert ist.
Wie sieht die "Einheitskugel"  [mm] \{ x \in \mathbf{R}^2: \parallel x \parallel_{1} = 1 \} [/mm] aus?  (Sog. 1-Norm).

Habe schon einiges versucht. Komme allerdings irgendwie immer auf 0!

Zunächst:
[mm] \parallel [/mm] x [mm] \parallel [/mm] im [mm] \mathbf{R}^2 [/mm] ist ja [mm] \wurzel{x_{1}^2 + x_{2}^2} [/mm]

also habe ich gleichgesetzt:

[mm] \wurzel{x_{1}^2 + x_{2}^2} [/mm] = [mm] |x_{1}| [/mm] + [mm] |x_{2}| [/mm]

daraus dann:

[mm] x_{1}^2 [/mm] + [mm] x_{2}^2 [/mm] = [mm] x_{1}^2 [/mm] + [mm] 2|x_{1}||x_{2}| [/mm] + [mm] x_{2}^2 [/mm]

und jetzt:

0 = [mm] 2|x_{1}||x_{2}| [/mm]

ich werde aus dem einfach nicht schlau! Hab ich nun irgenwas bewiesen, oder nicht? Übrigens, auf []Wikipedia - Normierter Raum kann man nachlesen:

[mm] \parallel [/mm] x [mm] \parallel_{1} \quad \le \quad \wurzel{n} \parallel [/mm] x [mm] \parallel_{2} [/mm]

Wie passt das ins Konzept? (vielleicht am besten direkt beim Link nachlesen!)

Grüße, Arno.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Sa 27.01.2007
Autor: Karl_Pech

Hallo Quetzcoatl,


>  Wie sieht die "Einheitskugel"  [mm]\{ x \in \mathbf{R}^2: \parallel x \parallel_{1} = 1 \}[/mm]
> aus?  (Sog. 1-Norm).


Das hast du dir ja schon durch diesen Link selbst beantwortet:


> Übrigens, auf
> []Wikipedia - Normierter Raum
> kann man nachlesen:



> Zeigen Sie, dass durch
>  
> [mm]\parallel[/mm] x [mm]\parallel_{1}[/mm] = [mm]|x_{1}|[/mm] + [mm]|x_{2}| \qquad \forall[/mm]
> x = [mm](x_{1}[/mm] + [mm]x_{2}) \in \mathbf{R}^2[/mm]
>  
> eine Norm über [mm]\mathbf{R}^2[/mm] definiert ist.
>  Habe schon einiges versucht. Komme allerdings irgendwie
> immer auf 0!
>  
> Zunächst:
> [..]
> ich werde aus dem einfach nicht schlau! Hab ich nun
> irgenwas bewiesen, oder nicht?


Leider kann ich dir nicht sagen, was genau du "bewiesen" hast (wolltest du eventuell eine Äquivalenz zur euklidischen Norm nachweisen oder so?). Jedenfalls sollte es hier reichen die Normaxiome zu überprüfen:


Angenommen es gilt [mm]\left\|x\right\|_1 = 0\;\forall x\in\mathbb{R}^2[/mm]. Dann ist also [mm]\left|x_1\right|+\left|x_2\right|=0[/mm]. Wegen [mm]\left|x_i\right| > 0[/mm] für [mm]x_i \ne 0[/mm] (wg. Betrag), kann diese Gleichung nur für [mm]x_i = 0[/mm] erfüllt sein.
Angenommen [mm]\left|x_1\right|+\left|x_2\right|=0[/mm]. Dann ist klar, daß [mm]\left\|x\right\|_1 = 0[/mm], weil wir's so definiert haben. Also sind die Aussagen äquivalent.


Zu zeigen, daß [mm]\left\|\alpha x\right\|_1 = \left|\alpha\right|\left\|x\right\|_1[/mm] ist, überlasse ich dir.


Und dann ist da noch Axiom 3 die Norm-Dreiecksungleichung. Aber da mußt du auch nur einsetzen und sieht, daß sie wegen [mm]\left|x_i+y_i\right|\le\left|x_i\right|+\left|y_i\right|[/mm] gelten muß. (Die linke Seite wird für den Fall [mm]\left|x_i\right| > \left|y_i\right|\wedge y_i < 0\wedge x_i > 0[/mm] echt kleiner als die Rechte).



Viele Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]