matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikNormalverteilung, welche X
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Normalverteilung, welche X
Normalverteilung, welche X < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung, welche X: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:29 Mi 06.04.2011
Autor: Foxy333

Hallo
ich habe eine Frage zur Normalverteilung.
Wenn man mit der Normalverteilung einer stetigen Zufallsgröße X die Wahrscheinlichkeits für P(|X-10|>1) berechnet, lautet es doch:
P(|X-10|>1)=P(X>11) +P(X<9)= P(X<9)+(1-P(X<11))
stimmt das?
Da ja X reine reelle Zahl sein darf, müsste doch : [mm] P(X>100)=P(X\ge [/mm] 100) sein oder?
D.h doch, dass die Gegenwahrscheinlichkeit von [mm] P(X>100)=1-P(X\le [/mm] 100)=1-P(X<100) ist oder?

Meine andere Frage bezieht sich auf die Frage,ob die Zufallsgröße auch negativ sein darf, sodass man auch P(X=-4) berechen darf.

Und was wäre bei Aufgaben, bei denen es zum Beispiel um die Länge eines Rohres geht?
Falls der Erwartungswert und die Varianz für die Länge eines Rohres gegeben sind, und die Zufallsgröße X normalverteilt ist, wie würde man die Wahrscheinlichkeit P( X<=100cm) berechnen?
Falls auch negative X Werte benutzt werden dürfen, müsste man doch: P(X<100)-P(X<0) berechnen oder?

Danke schonmal für eure Antworten

        
Bezug
Normalverteilung, welche X: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Mi 06.04.2011
Autor: Al-Chwarizmi


> Hallo
>  ich habe eine Frage zur Normalverteilung.
>  Wenn man mit der Normalverteilung einer stetigen
> Zufallsgröße X die Wahrscheinlichkeits für P(|X-10|>1)
> berechnet, lautet es doch:
>  P(|X-10|>1)=P(X>11) +P(X<9)= P(X<9)+(1-P(X<11))     [ok]
>  stimmt das?

Ja. Ganz pingelig zunächst:  P(X<9)+(1-P(X [mm] \le [/mm] 11))

>  Da ja X reine reelle Zahl sein darf,      [haee]

    "reine reelle Zahl" ?

> müsste doch :
> [mm]P(X>100)=P(X\ge[/mm] 100) sein oder?

Das hat allerdings nichts damit zu tun, dass X reell ist,
sondern damit, dass bei der Normalverteilung für jede
einzeln betrachtete Zahl a gilt, dass P(X=a)=0 .

>  D.h doch, dass die Gegenwahrscheinlichkeit von
> [mm]P(X>100)=1-P(X\le[/mm] 100)=1-P(X<100) ist oder?     [ok]
>  
> Meine andere Frage bezieht sich auf die Frage,ob die
> Zufallsgröße auch negativ sein darf, sodass man auch
> P(X=-4) berechen darf.

In der Normalverteilung kommen stets alle reellen
x-Werte in Frage. Beachte aber, dass in den aller-
meisten praktischen Anwendungen die Normalverteilung
nur als theoretische Approximation verwendet wird.
  

> Und was wäre bei Aufgaben, bei denen es zum Beispiel um
> die Länge eines Rohres geht?
>  Falls der Erwartungswert und die Varianz für die Länge
> eines Rohres gegeben sind, und die Zufallsgröße X
> normalverteilt ist, wie würde man die Wahrscheinlichkeit
> P( X<=100cm) berechnen?
>  Falls auch negative X Werte benutzt werden dürfen,
> müsste man doch: P(X<100)-P(X<0) berechnen oder?

Bei einer einigermaßen sinnvollen Anwendung dieser Art
(Produktion von Rohren mit einer Soll-Länge und einer
gewissen Toleranz) ist bestimmt die Toleranz und damit
die Varianz genügend klein, so dass die Wahrscheinlichkeit
P(X<0) dermassen winzig ist, dass man sie guten Gewissens
vernachläßigen kann.
  
LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]