matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikNormalverteilung & Co.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - Normalverteilung & Co.
Normalverteilung & Co. < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung & Co.: Probleme beim Lösen einer Aufg
Status: (Frage) beantwortet Status 
Datum: 21:42 Mi 06.09.2006
Autor: marabu

Aufgabe
Aufgabe
Hanna fährt jeden Tag mit den Verkehrsmitteln Bus und Bahn zur Schule. Die Fahrpläne sind nicht aufeinander abgestimmt. Zu 80 % erreicht sie eine direkte Verbindung Bus-Bahn, zu 20 % muss sie 30 Minuten auf den nächsten Zug warten.
a) Geben Sie die Verteilung, den Erwartungswert und die Varianz der Zufallsgröße [mm] x_{i} [/mm] an. [mm] x_{i}=1 [/mm] falls bei einer beliebig betrachteten Fahrt i der direkte Anschluss verpasst wird; [mm] x_{i}=0 [/mm] sonst.
b) Kontrollieren Sie die Voraussetzungen für die Anwendbarkeit des Zentralen Grenzwertsatz und geben Sie damit eine angenäherte Verteilungsfunktion der in einem Schuljahr (165 Fahrten) bei diesen Fahrten am Bahnhof verbrachte Zeit an.
c) In der Wartezeit strickt Hanna einen Schal. Mit welcher Wahrscheinlichkeit hat sie den Schal in dem Schuljahr auf dem Bahnhof fertiggestellt, wenn sie dafür 14 Stunden braucht?  

Hallo allerseits,

ich habe Startschwierigkeiten, was die o.g. Frage angeht:

zu a) Wie groß ist denn bitte "n"? (Um den Erwartungswert zu berechnen) Dazu sind doch überhaupt keine Angaben gemacht!? Oder ist der Erwartungswert gleich der Wahrscheinlichkeit, also 0,2?

zu b) Für den zentralen Grenzwertsatz sollte n>30 sein!? Die einzige vergleichbar große Größe sind jedoch die 30min. --> soll das heissen, die 30 min. sind "n"!?!?!?

zu c) P(X>28)=1-p(x<28)=1-phi((28-165*0,2)/(165*0,2*0,8))   ??????????

Über jegliche Tipps, oder Hilfe wäre ich seeeeeeeeeeeehr dankbar.
Gruß marabu


        
Bezug
Normalverteilung & Co.: a) gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Do 07.09.2006
Autor: marabu

hmm also ich finde die Aufgabe ist schwer verstndlich. ;)
Aber ich denke,

E(x)=0,2*30
V(x)=0,2*0,8*30

Wie kann ich jetzt die Verteilungsfunktion für so großes x angeben!?

Irgendwie, antwortet mir nie jemand, stelle ich die falschen Fragen!?
Gruß marabu

Bezug
        
Bezug
Normalverteilung & Co.: Unsicher!
Status: (Antwort) fertig Status 
Datum: 12:33 Fr 08.09.2006
Autor: Zwerglein

Hi, marabu,

ganz sicher bin ich mir nicht, aber ich versuch's mal:

> Aufgabe

> Hanna fährt jeden Tag mit den Verkehrsmitteln Bus und Bahn
> zur Schule. Die Fahrpläne sind nicht aufeinander
> abgestimmt. Zu 80 % erreicht sie eine direkte Verbindung
> Bus-Bahn, zu 20 % muss sie 30 Minuten auf den nächsten Zug
> warten.
> a) Geben Sie die Verteilung, den Erwartungswert und die
> Varianz der Zufallsgröße [mm]x_{i}[/mm] an. [mm]x_{i}=1[/mm] falls bei einer
> beliebig betrachteten Fahrt i der direkte Anschluss
> verpasst wird; [mm]x_{i}=0[/mm] sonst.

Hier geht es also um EINE beliebige Fahrt; demnach ist sozusagen n=1.
Die Verteilung besteht nur aus den Zufallswerten 0 und 1 sowie den zugehörigen Wahrscheinlichkeiten P(X=0) = 0,8;  P(X=1)=0,2.
Erwartungswert: 0,2, Varianz: 0,16.

> b) Kontrollieren Sie die Voraussetzungen für die
> Anwendbarkeit des Zentralen Grenzwertsatz und geben Sie
> damit eine angenäherte Verteilungsfunktion der in einem
> Schuljahr (165 Fahrten) bei diesen Fahrten am Bahnhof
> verbrachte Zeit an.
> c) In der Wartezeit strickt Hanna einen Schal. Mit welcher
> Wahrscheinlichkeit hat sie den Schal in dem Schuljahr auf
> dem Bahnhof fertiggestellt, wenn sie dafür 14 Stunden
> braucht?  
>
> zu b) Für den zentralen Grenzwertsatz sollte n>30 sein!?
> Die einzige vergleichbar große Größe sind jedoch die 30min.
> --> soll das heissen, die 30 min. sind "n"!?!?!?

Die 30 min haben mit n nichts zu tun!
Hanna fährt 165 mal, also ist n=165.

>  
> zu c) P(X>28)=1-p(x<28)=1-phi((28-165*0,2)/(165*0,2*0,8))  

P(X [mm] \ge [/mm] 28) = 1 - P(X [mm] \le [/mm] 27) [mm] \approx [/mm] 1 - [mm] \Phi(\bruch{27 - 165*0,2 + 0,5}{\wurzel{165*0,2*0,8}}) [/mm]

(Die 0,5 im Zähler ist die sog. "Stetigkeitskorrektur"; manche Schulen vernachlässigen diese, wodurch das Ergebnis etwas ungenauer wird.)

Reicht Dir das?

mfG!
Zwerglein

Bezug
                
Bezug
Normalverteilung & Co.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Sa 09.09.2006
Autor: marabu

Alles klar, danke =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]