matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikNormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Normalverteilung
Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 10:52 So 18.09.2005
Autor: Skydiver

Hallo.

Verstehe folgendes Beispiel nicht.

Messwerte sind durch äußere Einflüsse N(µ,10^-1) verteilt, wobei µ der tatsächliche Wert der zu messenden Größe ist. Wie oft muss man messen, um für das Mittel der Messwerte eine Streuung kleiner 10^-3 zu erhalten?

Lösung: [mm] \sigma^2/n [/mm] <= 10^-3

Woher kommt das? Hat das was mit dem Gesetz der Großen Zahlen zu tun??

Vielen Dank für eure Hilfe.

mfg.

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 So 18.09.2005
Autor: Stefan

Hallo!

Es muss gelten:

[mm] $10^{-3} \ge [/mm] Var [mm] \left[ \frac{1}{n} \sum\limits_{i=1}^n X_i \right] [/mm] = [mm] \frac{1}{n^2} \sum\limits_{i=1}^n Var[X_i] [/mm] = [mm] \frac{1}{n^2} \cdot [/mm] n [mm] \sigma^2 [/mm] = [mm] \frac{\sigma^2}{n}$. [/mm]

Liebe Grüße
Stefan

Bezug
                
Bezug
Normalverteilung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:55 Mo 19.09.2005
Autor: Skydiver

Hallo.

Vielen Dank!

Ich hab da noch ein paar Fragen dazu:

Also warum aus dem 1/n ein [mm] 1/n^2 [/mm] wird ist glaube ich klar, das müsste die lineare Transformation sein, wenn ich mich nicht irre.
Aber weshalb darf ich die Varianz einfach in die Summe hinein ziehen??

mfg.

Bezug
                        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Mo 19.09.2005
Autor: Stefan

Hallo!

Also, hier wurden zwei Dinge verwendet:

1) die Eigenschaft der Varianz in Hinblick auf affin-lineare Transformationen:

$Var[aX+b] = [mm] a^2 \cdot [/mm] Var[X]$;

das meintest du wohl auch... :-)

2) die []Gleichheit von Bienaymé (Korollar 12.8, Seite 58 in der skriptinternen Zählung); ich bin hier von Unkorreliertheit (die im Falle der Normalverteilung gleich der Unabhängigkeit ist) ausgegangen

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]