matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungNormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Normalverteilung
Normalverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Fr 11.07.2008
Autor: Jana1972

Aufgabe
Das Füllgewicht von Zuckerpaketen ist normalverteilt mit einem Erwartungswert von 500 (g) und einer Varianz von 36 [mm] (g^2). [/mm]

Frage: Zehn Prozent einer früheren Lieferung wichen um mehr als 4 (g) vom Erwartungswert ab. Wie groß war die Standartabweichung der Füllgewichte dieser Lieferung?  

Die Formel für die Normalverteilung ist bekannt mit:
F (x) = [mm] \phi \left( \bruch { x- Erwartungswert } { \sigma} \right) [/mm]

Normalerweise würde ich die Formel versuchen, nach [mm] \sigma [/mm] umzustellen, aber irgendwie weiß ich nicht wohin mit den "mehr als 4 (g)

Vielen Dank im Voraus für Eure Hilfe!  

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Fr 11.07.2008
Autor: abakus


> Das Füllgewicht von Zuckerpaketen ist normalverteilt mit
> einem Erwartungswert von 500 (g) und einer Varianz von 36
> [mm](g^2).[/mm]
>
> Frage: Zehn Prozent einer früheren Lieferung wichen um mehr
> als 4 (g) vom Erwartungswert ab.

Das heißt also, dass 90% aller Pakete NICHT um mehr als 4 g abwichen.
Damit liegen 90% aller Pakete im Intervall (500g-4g ; 500g + 4g).
Schau also in deinen Tabellen nach, für welches Vielfache von Sigma genau 90% der Werte in dieser Umgebung von [mm] \mu [/mm] liegen.
Gruß Abakus


> Wie groß war die
> Standartabweichung der Füllgewichte dieser Lieferung?
> Die Formel für die Normalverteilung ist bekannt mit:
>   F (x) = [mm]\phi \left( \bruch { x- Erwartungswert } { \sigma} \right)[/mm]
>
> Normalerweise würde ich die Formel versuchen, nach [mm]\sigma[/mm]
> umzustellen, aber irgendwie weiß ich nicht wohin mit den
> "mehr als 4 (g)
>
> Vielen Dank im Voraus für Eure Hilfe!  


Bezug
                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:04 Sa 12.07.2008
Autor: Jana1972

Hallo abakus,

vielen, herzlichen Dank für Deine Hilfe!!!  :-)

Viele Grüße
Jana

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]