matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieNormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Normalverteilung
Normalverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Di 01.07.2008
Autor: cauchy

Aufgabe
Sei X eine [mm] N(\mu, \sigma) [/mm] -verteilte Zufallsvariable. Seien a,b [mm] \in \IR [/mm] mit a>0. Zeigen Sie, dass die Zufallsvariable aX+B [mm] N(a\mu [/mm] +b, [mm] a\sigma) [/mm] -verteilt ist.

Hallo Leute, diese Aufgabe sieht eigentlich ganz einfach aus... ich krieg sie trotzdem nicht hin.
Die Normalverteilung wurde bei uns im Skript wie folgt definiert:

[mm] $$\int_{-\infty}^{\infty}{\bruch{1}{\wurzel{2\pi}\cdot \sigma}}\cdot e^{-\bruch{(t- \mu)^2}{2 \sigma ^2}}$$ [/mm]

Wenn ich jetzt von der ZV aX+B ausgehe, muss ich wahrscheinlich nur t durch z. B. at+b ersetzen? Das hab ich schon mal ausprobiert, bringt mich aber irgendwie auch nicht weiter. Für einen Tipp wäre ich sehr dankbar.

Ich habe diese Frage in keinem anderen Internetforum gestellt.

Gruß, cauchy

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Di 01.07.2008
Autor: Somebody


> Sei X eine [mm]N(\mu, \sigma)[/mm] -verteilte Zufallsvariable. Seien
> a,b [mm]\in \IR[/mm] mit a>0. Zeigen Sie, dass die Zufallsvariable
> aX+B [mm]N(a\mu[/mm] +b, [mm]a\sigma)[/mm] -verteilt ist.
>  Hallo Leute, diese Aufgabe sieht eigentlich ganz einfach
> aus... ich krieg sie trotzdem nicht hin.
>  Die Normalverteilung wurde bei uns im Skript wie folgt
> definiert:
>  
> [mm]\int_{-\infty}^{\infty}{\bruch{1}{\wurzel{2\pi}\cdot \sigma}}\cdot e^{-\bruch{(t- \mu)^2}{2 \sigma ^2}}[/mm]

Genau so wurde dies kaum definiert: dieses Integral ist konstant $1$. Aber man könnte sagen, dass $X$ genau dann [mm] $N(\mu,\sigma)$ [/mm] verteilt ist, wenn für alle [mm] $x\in \IR$ [/mm] gilt:

[mm]\mathrm{P}(X\leq x)=\int\limits_{-\infty}^x\frac{1}{\sqrt{2\pi}\sigma}\mathrm{e}^{-\frac{(t-\mu)^2}{2\sigma^2}}\;dt[/mm]


> Wenn ich jetzt von der ZV aX+B ausgehe, muss ich
> wahrscheinlich nur t durch z. B. at+b ersetzen? Das hab ich
> schon mal ausprobiert, bringt mich aber irgendwie auch
> nicht weiter. Für einen Tipp wäre ich sehr dankbar.

Nun möchtest Du also zeigen, dass $aX+b$ [mm] $N(a\mu+b,a\sigma)$-verteilt [/mm] ist, das heisst, dass gilt:

[mm]\mathrm{P}(aX+b\leq x)=\int\limits_{-\infty}^x\frac{1}{\sqrt{2\pi}a\sigma}\mathrm{e}^{-\frac{(t-(a\mu+b))^2}{2(a\sigma)^2}}\;dt[/mm]


Um dies zu zeigen, könntest Du so beginnen:

[mm]\mathrm{P}(aX+b\leq x)=\mathrm{P}\big(X\leq \frac{x-b}{a}\big)=\int\limits_{-\infty}^{\frac{x-b}{a}}\frac{1}{\sqrt{2\pi}\sigma}\mathrm{e}^{-\frac{(t-\mu)^2}{2\sigma^2}}\;dt[/mm]

Das erste Gleichheitszeichen gilt, weil das Argument von [mm] $\mathrm{P}$ [/mm] nur auf äquivalente Weise umgeformt wurde. Das zweite Gleichheitszeichen gilt, weil $X$ nach Voraussetzung [mm] $N(\mu,\sigma)$-verteilt [/mm] ist.
Als nächstes machst Du eine Substitution so, dass die obere Grenze des transformierten Integrals den gewünschten Wert hat, nämlich (siehe oben), $x$. Und dann hoffst Du, dass sich der transformierte Integrand ebenfalls auf die gewünschte Form bringen lässt.


Bezug
                
Bezug
Normalverteilung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 01.07.2008
Autor: cauchy


> [mm]\mathrm{P}(aX+b\leq x)=\int\limits_{-\infty}^x\frac{1}{\sqrt{2\pi}a\sigma}\mathrm{e}^{-\frac{(t-(a\mu+b))^2}{2(a\sigma)^2}}\;dt[/mm]
>  
> Um dies zu zeigen, könntest Du so beginnen:
>  
> [mm]\mathrm{P}(aX+b\leq x)=\mathrm{P}\big(X\leq \frac{x-b}{a}\big)=\int\limits_{-\infty}^{\frac{x-b}{a}}\frac{1}{\sqrt{2\pi}\sigma}\mathrm{e}^{-\frac{(t-\mu)^2}{2\sigma^2}}\;dt[/mm]
>  
> Das erste Gleichheitszeichen gilt, weil das Argument von
> [mm]\mathrm{P}[/mm] nur auf äquivalente Weise umgeformt wurde. Das
> zweite Gleichheitszeichen gilt, weil [mm]X[/mm] nach Voraussetzung
> [mm]N(\mu,\sigma)[/mm]-verteilt ist.
>  Als nächstes machst Du eine Substitution so, dass die
> obere Grenze des transformierten Integrals den gewünschten
> Wert hat, nämlich (siehe oben), [mm]x[/mm]. Und dann hoffst Du, dass
> sich der transformierte Integrand ebenfalls auf die
> gewünschte Form bringen lässt.
>  

OK, das leuchtet ein :) danke.
Kann ich auch alternativ zeigen, dass

[mm]\int\limits_{-\infty}^x\frac{1}{\sqrt{2\pi}a\sigma}\mathrm{e}^{-\frac{(t-(a\mu+b))^2}{2(a\sigma)^2}}\;dt[/mm] = [mm]\int\limits_{-\infty}^{\frac{x-b}{a}}\frac{1}{\sqrt{2\pi}\sigma}\mathrm{e}^{-\frac{(t-\mu)^2}{2\sigma^2}}\;dt[/mm]

gilt? Denn wie ich die Substitution ausführen soll, ist mir nicht so ganz klar...

LG, cauchy

Bezug
                        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:32 Mi 02.07.2008
Autor: Somebody


> > [mm]\mathrm{P}(aX+b\leq x)=\int\limits_{-\infty}^x\frac{1}{\sqrt{2\pi}a\sigma}\mathrm{e}^{-\frac{(t-(a\mu+b))^2}{2(a\sigma)^2}}\;dt[/mm]
>  
> >  

> > Um dies zu zeigen, könntest Du so beginnen:
>  >  
> > [mm]\mathrm{P}(aX+b\leq x)=\mathrm{P}\big(X\leq \frac{x-b}{a}\big)=\int\limits_{-\infty}^{\frac{x-b}{a}}\frac{1}{\sqrt{2\pi}\sigma}\mathrm{e}^{-\frac{(t-\mu)^2}{2\sigma^2}}\;dt[/mm]
>  
> >  

> > Das erste Gleichheitszeichen gilt, weil das Argument von
> > [mm]\mathrm{P}[/mm] nur auf äquivalente Weise umgeformt wurde. Das
> > zweite Gleichheitszeichen gilt, weil [mm]X[/mm] nach Voraussetzung
> > [mm]N(\mu,\sigma)[/mm]-verteilt ist.
>  >  Als nächstes machst Du eine Substitution so, dass die
> > obere Grenze des transformierten Integrals den gewünschten
> > Wert hat, nämlich (siehe oben), [mm]x[/mm]. Und dann hoffst Du, dass
> > sich der transformierte Integrand ebenfalls auf die
> > gewünschte Form bringen lässt.
>  >  
> OK, das leuchtet ein :) danke.
>  Kann ich auch alternativ zeigen, dass
>  
> [mm]\int\limits_{-\infty}^x\frac{1}{\sqrt{2\pi}a\sigma}\mathrm{e}^{-\frac{(t-(a\mu+b))^2}{2(a\sigma)^2}}\;dt = \int\limits_{-\infty}^{\frac{x-b}{a}}\frac{1}{\sqrt{2\pi}\sigma}\mathrm{e}^{-\frac{(t-\mu)^2}{2\sigma^2}}\;dt[/mm]
>  
> gilt?

Natürlich, dies ist alles, was Du zeigen musst.


> Denn wie ich die Substitution ausführen soll, ist mir
> nicht so ganz klar...

Wenn Du die Substitution $u=at+b$ machst, transformiert sich ein bestimmtes Integral doch so:

[mm]\int\limits_a^b f(u(t))\cdot u'(t)\; dt=\int_{u(a)}^{u(b)} f(u)\; du[/mm]

Also transformieren sich die untere und obere Grenze Deines Integrals somit zu [mm] $u(-\infty)=-\infty$ [/mm] bzw. [mm] $u((x-b)/a)=a\frac{x-b}{a}+b=x$, [/mm] wie gewünscht.
Verbleibendes Problem: den Integranden auf die nötige Form [mm] $f(u(t))\cdot [/mm] u'(t)$ zu bringen. $u'(t)$ ist kein Problem, da eine Konstante. Des weiteren ist

[mm] [center]$\frac{(t-\mu)^2}{2\sigma^2}=\frac{(at-a\mu)^2}{2(a\sigma)^2}=\frac{(at+b-(a\mu+b))^2}{2(a\sigma)^2}$[/center] [/mm]


Bezug
                                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:42 Mi 02.07.2008
Autor: cauchy

Vielen Dank für die Tipps. Nachdem ich anfänglich damit nichts anfangen konnte, habe ich es jetzt dennoch hinbekommen :)
LG, cauchy

Bezug
        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 Mi 02.07.2008
Autor: luis52

Noch ein Ansatz:

[mm] $P(aX+b\le y)=P(X\le(y-b)/a)$. [/mm] Und wie berechnet man
Wahrscheinlichkeiten fuer X?

vg Luis
            

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]