matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikNormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - Normalverteilung
Normalverteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:29 Di 05.09.2006
Autor: GuapoChico

Aufgabe
Eine Zufallsvariable X sei N(μ;σ)-verteilt. Wie groß muss k unbediengt sein, damit X mit einer Wahrscheinlichkeit von 95% einen Wert des Intervalls
[μ -k*σ;μ+k*σ] hat.

Hmm, also ich hab mal wieder ein Problem in Mathe und hoffe, dass ihr mir eventuell helfen könntet

Wir haben versucht im Unterricht eine Aufgabe zu lösen, zu der selbst nicht einmal unser Lehrer in der Lage war sie zu lösen.

Eine Zufallsvariable X sei N(μ;σ)-verteilt. Wie groß muss k unbediengt sein, damit X mit einer Wahrscheinlichkeit von 95% einen Wert des Intervalls
[μ -k*σ;μ+k*σ] hat.

Also mathematisch:
P(μ-k*σ≤X≤μ+k*σ)≥0,95

Im Lösungsbuch unseres Lehrers steht diese Formel geschrieben, die zur Lösung weiterhelfen soll:
2*Φ(1,96)-1=0,95


Also ich blick da nun auch wenig durch, würde das aber schon gern verstehen.
Den Wert für Φ(1,96) kann man ja aus der Gausschen Summenformel ablesen. Aber wie kommt man auf diese Gleichung?

Bitte bitte helft mir
Danke im Vorraus!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.uni-protokolle.de/foren/viewtopic.php?p=613262#613262

        
Bezug
Normalverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 07.09.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]