matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikNormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Normalverteilung
Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Ungleichung
Status: (Frage) beantwortet Status 
Datum: 22:14 Mo 29.05.2006
Autor: Karl_Pech

Hallo Zusammen,


Ich komme bei folgender Aufgabe nicht weiter:


Aufgabe

Sei [mm]X[/mm] eine [mm]N\left(0,\sigma^2\right)\texttt{-verteilte}[/mm] Zufallsvariable. Zeigen Sie


[mm]P(X \ge x) \le \frac{\sigma}{x\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}\,\forall x > 0.[/mm]


Dort steht auch, dies sei eine Verschärfung der Tschebyscheff-Ungleichung. Außerdem ist dort ein Hinweis gegeben, welchem ich zu folgen versuche:


1.) Führen Sie das Problem zuerst auf den Fall [mm]\sigma = 1[/mm] zurück:


Hier muß man also eine lineare Transformation der gegebenen Normalverteilung durchführen:


[mm]P(X \ge x) = 1-P(X < x) = 1-\Phi\left(\frac{x-0}{\sigma}\right) = 1-\int_{-\infty}^{x/\sigma}{\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{t^2}{2\sigma^2}}\,\mathrm{d}t}[/mm]


Stimmt das soweit? Habe ich den Hinweis damit beachtet(, oder doch eher mißverstanden)?


2.) Benutzen Sie dann die Variablentransformation [mm]\eta(\xi) = \frac{\xi^2}{2}[/mm]:


Und bei diesem Teil weiß ich bisher nicht so recht was ich machen soll. Ich muß also etwas für [mm]t[/mm] substituieren, oder? Und was dann?


Danke für eure Hilfe!



Viele Grüße
Karl





        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Do 01.06.2006
Autor: DirkG

Ok, was haben wir bisher:
[mm] $$P(X\geq [/mm] x) = [mm] \int\limits_x^{\infty} [/mm] ~ [mm] \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{t^2}{2\sigma^2}} [/mm] ~ [mm] \mathrm{d}t [/mm] .$$
Jetzt in einem Aufwasch die Substitution [mm] $\eta=\frac{t^2}{2\sigma^2}$. [/mm] Wegen $x>0$ sind auch alle $t>0$,
es folgt [mm] $t=\sigma\sqrt{2\eta}$ [/mm] und daher [mm] $\mathrm{d}t [/mm] = [mm] \frac{\sigma}{\sqrt{2\eta}} [/mm] ~ [mm] \mathrm{d}\eta$ [/mm] und somit
[mm] $$P(X\geq [/mm] x) = [mm] \int\limits_{\frac{x^2}{2\sigma^2}}^{\infty} [/mm] ~ [mm] \frac{1}{2\sqrt{\pi\eta}} e^{-\eta} [/mm] ~ [mm] \mathrm{d}\eta [/mm] .$$
Die Funktion [mm] $\eta \to \frac{1}{2\sqrt{\pi\eta}}$ [/mm] ist monoton fallend, also kann man sie nach oben abschätzen durch den Wert an der unteren Integrationsgrenze:
[mm] $$P(X\geq [/mm] x) [mm] \leq \int\limits_{\frac{x^2}{2\sigma^2}}^{\infty} [/mm] ~ [mm] \frac{1}{2\sqrt{\pi\frac{x^2}{2\sigma^2}}} e^{-\eta} [/mm] ~ [mm] \mathrm{d}\eta [/mm] .$$
Jetzt lässt sich einiges vereinfachen, und dann steht dein gewünschtes Reultat schon da.


Bezug
                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Do 01.06.2006
Autor: Karl_Pech

Hallo Dirk!


Zunächst einmal Danke für deine Antwort! Ich werde versuchen noch auf diese Aufgabe zurückzukommen...



Grüße
Karl





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]