matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikNormalvert. ZV - W'keit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "mathematische Statistik" - Normalvert. ZV - W'keit
Normalvert. ZV - W'keit < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalvert. ZV - W'keit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 Mi 12.04.2017
Autor: ChopSuey

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Seien $ X_1, ..., X_n$ unabhängige $ N(4,9)$-verteilte Zufallsvariablen. Sei $ \overline{X}_n = \frac{1}{n}\left(X_1+...+X_n)$

Man berechne

$ P (\vert \overline{X}_{100} - 4 \vert \ge 0.6)$

Hallo,

kann mir jemand einen kurzen Tipp geben wie ich die Wahrscheinlichkeit mit der Zufallsvariable im Betrag errechnen kann? Ich finde dazu leider nichts in meinen Unterlagen, das mir weiterhilft.

Gerne darf es auch ein Link zu Wikipedia oder einem Skript sein. Ich les' mir das gerne an. Ich habe ein wenig hin und her probiert aber weiß wirklich nicht, welchen Ansatz ich wählen muss.

Freue mich über jeden Hinweis.

LG,
ChopSuey

        
Bezug
Normalvert. ZV - W'keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:37 Mi 12.04.2017
Autor: ChopSuey

Hallo,

jetzt ist es mir eingefallen. Ich hab den Wald vor lauter Bäumen nicht gesehen. Ohje

Danke trotzdem! :-)

LG,
ChopSuey

Bezug
                
Bezug
Normalvert. ZV - W'keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 Do 13.04.2017
Autor: luis52


>  
> Danke trotzdem! :-)


Moin, solche Fragen sind die schoensten. [kuss]

Bezug
                        
Bezug
Normalvert. ZV - W'keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Do 13.04.2017
Autor: ChopSuey

Hallo Luis!

>  
> >  

> > Danke trotzdem! :-)
>  
>
> Moin, solche Fragen sind die schoensten. [kuss]

tatsächlich war das dann doch garnicht soo trivial wie es im ersten Moment nach meiner ersten Lösungsidee den Anschein für mich hatte. Aber nachdem ich mir nochmal genauer die standardisierte ZV über $ [mm] \overline{X}_{100}$ [/mm] angesehen und den Betrag probehalber aufgelöst habe, war die Aufgabe mit dem zentralen Grenzwertsatz  zum Glück schnell gelöst.

Hab gestern echt keinen Ansatz gefunden. Danke für's reinschauen [prost]

Liebe Grüße,
ChopSuey


Bezug
                                
Bezug
Normalvert. ZV - W'keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Do 13.04.2017
Autor: Gonozal_IX

Hiho,

wieso brauchst du dafür den ZGW? Du kannst den Ausdruck doch einfach direkt berechnen?

Gruß,
Gono

Bezug
                                        
Bezug
Normalvert. ZV - W'keit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Fr 14.04.2017
Autor: ChopSuey

Hallo Gono,

> Hiho,
>  
> wieso brauchst du dafür den ZGW? Du kannst den Ausdruck
> doch einfach direkt berechnen?

Ich hab's folgendermaßen gemacht:

$ [mm] P(\vert\overline{X}_{100} [/mm] - 4 [mm] \vert \ge [/mm] 0.6) $

Wegen $ [mm] X_i \sim N(\mu, \sigma^2)$ [/mm] ist $ [mm] \overline{X}_{100} \sim N(\mu, \frac{\sigma^2}{n})$ [/mm]

also insbesondere

$ [mm] X_i \sim [/mm] N(4, 9) [mm] \Rightarrow \overline{X}_{100} \sim [/mm]  N(4, 0.09)$

Bildet man damit die standardisierte ZV $ Z = [mm] \frac{\overline{X}_{(n)}-\mu}{\sigma} [/mm] = [mm] \frac{\overline{X}_{100}-4}{0.3}$ [/mm]

gilt wegen

$ [mm] P(\vert\overline{X}_{100} [/mm] - 4 [mm] \vert \ge [/mm] 0.6) = [mm] P(\frac{\vert\overline{X}_{100} - 4\vert}{\vert 0.3 \vert} \ge [/mm] 2) = [mm] P(\vert [/mm] Z [mm] \vert \ge [/mm] 2) = P(Z < -2) + P(Z > 2) = [mm] 2(1-\phi(2))$ [/mm]

hmm jetzt seh ich gerade, dass ich garnicht wirklich explizit gebrauch vom ZGW gemacht habe. Dachte ich hätte den zwischendurch irgendwo verwendet.

Gibt es denn einen alternativen Weg die Wahrscheinlichkeit zu bestimmen? Freue mich über jeden Hinweis.

>  
> Gruß,
>  Gono

Danke für die Rückmeldung!

LG,
ChopSuey


Bezug
                                                
Bezug
Normalvert. ZV - W'keit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 So 16.04.2017
Autor: Gonozal_IX

Hiho,

> [mm]P(\vert\overline{X}_{100} - 4 \vert \ge 0.6) = P(\frac{\vert\overline{X}_{100} - 4\vert}{\vert 0.3 \vert} \ge 2) = P(\vert Z \vert \ge 2) = P(Z < -2) + P(Z > 2) = 2(1-\phi(2))[/mm]

[ok]
Das ist exakt der Weg, den ich im Sinn hatte…

> hmm jetzt seh ich gerade, dass ich garnicht wirklich explizit gebrauch vom ZGW gemacht habe.

Du hast den auch implizit nirgends verwendet, ergo gar nicht.
Wie gesagt: Er ist hier auch gar nicht nötig.

> Gibt es denn einen alternativen Weg die Wahrscheinlichkeit
> zu bestimmen? Freue mich über jeden Hinweis.

Es gibt sicher beliebig viele Wege die Wahrscheinlichkeit zu bestimmen… man kann es ja beliebig verkomplizieren ^^
Aber: Dein Weg ist der direkteste und damit wohl geeignetste…

Gruß,
Gono  


Bezug
                                                        
Bezug
Normalvert. ZV - W'keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:34 So 16.04.2017
Autor: ChopSuey

Hallo Gono,

vielen Dank! [ok]

LG,
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]