matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNormalteiler, Erzeugnis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Normalteiler, Erzeugnis
Normalteiler, Erzeugnis < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler, Erzeugnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Sa 17.11.2012
Autor: sissile

Aufgabe
Sei G eine Gruppe, H [mm] \le [/mm] G und N Normalteiler von G
Dann gilt trivialerweise: NH [mm] \subseteq [/mm] < N [mm] \cup [/mm] H>

Hallo ich geh gerade alte Vorlesungen durch.
Die andere Richtung haben wir bewiesen, diese als Trivialität abgehackt. Leidre wie sie oft seh ich die Offensichtlichkeit nicht.

Ein element dass in NH ist lässt sich darstellen x= n * [mm] h_1 *..h_r [/mm] wobei n [mm] \in \IN [/mm] und [mm] h_i \in [/mm] H
nun müsste folgen dass x sich auch darstellen lässt als  x= [mm] n_1 h_1 [/mm] .. [mm] n_r h_r [/mm]  wobei [mm] n_1 [/mm] ,.., [mm] n_r \in \IN [/mm] und [mm] h_1 [/mm] ,.., [mm] h_r \in [/mm] H ist
So haben wir es zumindest im anderen Beweis notiert

        
Bezug
Normalteiler, Erzeugnis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 So 18.11.2012
Autor: Marcel

Hallo Sissile,

> Sei G eine Gruppe, H [mm]\le[/mm] G und N Normalteiler von G
>  Dann gilt trivialerweise: NH [mm]\subseteq[/mm] < N [mm]\cup[/mm] H>
>  Hallo ich geh gerade alte Vorlesungen durch.
>  Die andere Richtung haben wir bewiesen, diese als
> Trivialität abgehackt. Leidre wie sie oft seh ich die
> Offensichtlichkeit nicht.
>  
> Ein element dass in NH ist lässt sich darstellen x= n *
> [mm]h_1 *..h_r[/mm] wobei n [mm]\in \IN[/mm] und [mm]h_i \in[/mm] H
>  nun müsste folgen dass x sich auch darstellen lässt als  
> x= [mm]n_1 h_1[/mm] .. [mm]n_r h_r[/mm]  wobei [mm]n_1[/mm] ,.., [mm]n_r \in \IN[/mm] und [mm]h_1[/mm]
> ,.., [mm]h_r \in[/mm] H ist

ohne jetzt drüber nachzudenken, ob das mit den Darstellungen wirklich so
ist. Aber rein die Folgerung:
[mm] $$x=n*(h_1*...*h_r) \Rightarrow x=\produkt_{k=1}^r (n_jh_j)$$ [/mm]
ist doch trivial:
Wegen
[mm] $$n*(h_1*...*h_r)=(n*h_1)*...*h_r$$ [/mm]
(Assoziativität) setzt Du einfach [mm] $n_1:=n \in [/mm] N$ und [mm] $n_j:=e_G=e_N \in [/mm] N$
für $j [mm] \ge 2\,.$ [/mm] Dabei ist [mm] $e_G$ [/mm] das neutrale Element von G.

P.S.: I.a. ist [mm] $\IN \not=N\,.$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]