matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNormalteiler
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Normalteiler
Normalteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler: Lösungstipps
Status: (Frage) beantwortet Status 
Datum: 12:22 Fr 17.12.2010
Autor: Freaky

Aufgabe
Seien G eine Gruppe und U c G eine Teilmenge. Untersuchen Sie, ob U ein
Normalteiler von G ist, falls U und G wie folgt gegeben sind:
(a) G = Z, U = {1, -1};
(b) G = Sn, U = {sigma|sigma(1) = 1} für ein n>=2 (Sn= symmetrische Gruppe);
(c) G ist eine beliebige Gruppe und U = f^-1(N) für einen Gruppenhomomorphismus f : G-> H und einen Normalteiler N von H.

Hallihallo,
ich bräuchte etwas Hilfe bei der obigen Aufgabe.
Bei der (a) vermute ich, dass U Normalteiler ist, aber bei den anderen beiden habe ich keine Ahnung, wie ich das angehen soll. Kann mir vielleicht jemand einen Lösungsansatz geben?
Liebe Grüße, Freaky

        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Fr 17.12.2010
Autor: wieschoo


> Seien G eine Gruppe und U c G eine Teilmenge. Untersuchen
> Sie, ob U ein
>  Normalteiler von G ist, falls U und G wie folgt gegeben
> sind:
>  (a) G = Z, U = {1, -1};
>  (b) G = Sn, U = {sigma|sigma(1) = 1} für ein n>=2 (Sn=
> symmetrische Gruppe);
>  (c) G ist eine beliebige Gruppe und U = f^-1(N) für einen
> Gruppenhomomorphismus f : G-> H und einen Normalteiler N
> von H.
>  Hallihallo,
> ich bräuchte etwas Hilfe bei der obigen Aufgabe.
> Bei der (a) vermute ich, dass U Normalteiler ist, aber bei

Ist [mm] z=$\IZ$ [/mm] ??Eine gute Vermutung.
Un jetzt benutzt du eine Definition.
Für den Normalteiler gibt es drei äquivalente Eigenschaften. DU brauchst nur zeigen: [mm] $\forall g\in G\;\; gUg^{-1}\subseteq [/mm] U$.

> den anderen beiden habe ich keine Ahnung, wie ich das
> angehen soll. Kann mir vielleicht jemand einen
> Lösungsansatz geben?
> Liebe Grüße, Freaky

Das geht genauso. Du musst mit den Definitionen arbeiten.


Bezug
                
Bezug
Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Fr 17.12.2010
Autor: Freaky

Danke für die Hilfe! Bei (a) und (b) habe ich jetzt als Lösung, dass es keine Normalteiler sind, aber bei (c) komme ich irgendwie immer noch nicht weiter...

Bezug
                        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Fr 17.12.2010
Autor: felixf

Moin!

> Danke für die Hilfe! Bei (a) und (b) habe ich jetzt als
> Lösung, dass es keine Normalteiler sind,

Genau. Bei (a) ist es ja nichtmals eine Untergruppe!

> aber bei (c)
> komme ich irgendwie immer noch nicht weiter...

Also bei (c) ist es immer ein Normalteiler. Du musst jetzt mal rechnen. Zeige zuerst, dass [mm] $f^{-1}(N)$ [/mm] eine Untergruppe ist. Das ist einfach, so aehnlich wie man etwa zeigt, dass der Kern von $f$ eine Untergruppe von $G$ ist.

Und ebenso zeigt man, dass [mm] $f^{-1}(N)$ [/mm] ein Normalteiler ist: dazu muss man doch [mm] $g^{-1} f^{-1}(N) [/mm] g [mm] \subseteq f^{-1}(N)$ [/mm] zeigen. Zeige dazu, dass [mm] $g^{-1} f^{-1}(N) [/mm] g = [mm] f^{-1}(f(g)^{-1} [/mm] N g)$ ist.

LG Felix


Bezug
                                
Bezug
Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 So 19.12.2010
Autor: katrin10

Hallo,

warum ist es denn (b) kein Normalteiler? Da U eine triviale Untergruppe von G ist, dachte ich, dass U Normalteiler von G ist.
Bei der (c) habe ich gezeigt, dass U eine Untergruppe von G ist und möchte nun zeigen, dass [mm] g^{-1} f^{-1}(N) [/mm] g [mm] \subseteq f^{-1}(N) [/mm] gilt. Allerdings bin ich mir nicht sicher, wie ich dabei vorgehen soll.
Kann mir jemand bitte einen Lösungstipp geben?
Vielen Dank und viele Grüße
Katrin



Bezug
                                        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 So 19.12.2010
Autor: felixf

Moin Katrin!

> warum ist es denn (b) kein Normalteiler? Da U eine triviale
> Untergruppe von G ist, dachte ich, dass U Normalteiler von
> G ist.

Wieso sollte $U$ eine triviale Untergruppe (also [mm] $\{ id \}$ [/mm] oder $G$ selber) sein?! Das stimmt doch gar nicht, es sei denn $n = 2$.

> Bei der (c) habe ich gezeigt, dass U eine Untergruppe von G
> ist und möchte nun zeigen, dass [mm]g^{-1} f^{-1}(N)[/mm] g
> [mm]\subseteq f^{-1}(N)[/mm] gilt. Allerdings bin ich mir nicht
> sicher, wie ich dabei vorgehen soll.
> Kann mir jemand bitte einen Lösungstipp geben?

Nimm dir ein Element $x [mm] \in g^{-1} f^{-1}(N) [/mm] g$. Dann ist $x = [mm] g^{-1} [/mm] y g$ mit $f(y) [mm] \in [/mm] N$.

Jetzt musst du zeigen, dass $f(x) [mm] \in [/mm] N$ ist. Rechne das doch mal nach.

(Bisher habe ich nur die Definitionen eingesetzt, nichts weiter!)

LG Felix


Bezug
                                                
Bezug
Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 So 19.12.2010
Autor: katrin10

Hallo,

vielen Dank für die schnelle Antwort.

Warum id keine Untergruppe von [mm] S_n [/mm] ist, verstehe ich nicht. In der Vorlesung haben wir die Untergruppenkriterien überprüft und aufgeschrieben, dass U eine Untergruppe von [mm] S_n [/mm] (für ein [mm] \IN_{>0}) [/mm] ist.


Bei der (c) habe ich jetzt gerechnet:
[mm] f(g^{-1}yg)=f(g^{-1}) [/mm] f(y) f(g) [mm] \in f(g^{-1}) [/mm] N f(g)

Darf man nun die Faktoren vertauschen, sodass man folgendes erhält?

[mm] f(g^{-1}yg)\in f(g^{-1}) [/mm] f(g) N
-> [mm] f(g^{-1}yg)\in f(g^{-1}g) [/mm] N
-> [mm] f(g^{-1}yg)\in [/mm] N

Bezug
                                                        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 08:17 Mo 20.12.2010
Autor: statler

Guten Morgen!

> Warum id keine Untergruppe von [mm]S_n[/mm] ist, verstehe ich nicht.
> In der Vorlesung haben wir die Untergruppenkriterien
> überprüft und aufgeschrieben, dass U eine Untergruppe von
> [mm]S_n[/mm] (für ein [mm]\IN_{>0})[/mm] ist.

Die Identität, genauer die Menge mit der Identität als einzigem Element, ist natürlich eine Untergruppe und auch ein NT. Aber hier steht in schlechtem Mathe-Speak

(b) G = Sn, U = {sigma|sigma(1) = 1} für ein n>=2 (Sn= symmetrische Gruppe);

Das soll wohl heißen: Sei n [mm] \ge [/mm] 2 und [mm] S_n [/mm] die symmetrische Gruppe auf den Zahlen von 1 bis n. U ist dann die Teilmenge derjenigen Permutationen, die 1 festlassen.

Nun ist das im Falle n = 2 auch noch ein NT, weil eine 2er-Permutation, die 1 festhält, automatisch auch 2 festhält, also = id ist.

Aber für n = 3 solltest du ein Gegenbeispiel finden können, was dann automatisch auch die Fälle n > 3 erledigt (Warum?).

Gruß aus HH-Harburg
Dieter


Bezug
                                                                
Bezug
Normalteiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Di 21.12.2010
Autor: katrin10

Vielen Dank. Ich habe es verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]