matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Normalparabel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Normalparabel
Normalparabel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalparabel: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:23 Di 20.09.2011
Autor: mathegenie84

Aufgabe
Kennt man von einer verschobenen Normalparabel zwei beliebige Punkte, so kann man die Funktionsvorschrift bestimmen.
P(2/4) und Q(-2/4)

Kann mir bitte jemand sagen, wie ich da vorgehen muss??

        
Bezug
Normalparabel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Di 20.09.2011
Autor: kamaleonti

Moin,
> Kennt man von einer verschobenen Normalparabel zwei
> beliebige Punkte, so kann man die Funktionsvorschrift
> bestimmen.
>  P(2/4) und Q(-2/4)

Die Parabel hat die Gleichung [mm] f(x)=x^2+px+q. [/mm] Bestimme die Parameter p und q anhand der beiden gegebenen Punkte (Einsetzen liefert zwei Gleichungen für zwei Unbekannte).

LG



Bezug
                
Bezug
Normalparabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Di 20.09.2011
Autor: mathegenie84

geht das auch mit der scheitelpunktsform??

Bezug
                        
Bezug
Normalparabel: auch möglich
Status: (Antwort) fertig Status 
Datum: 13:33 Di 20.09.2011
Autor: Roadrunner

Hallo mathegenie!


Ja, damit geht es auch. Das Prinzip ist dasselbe: die beiden Wertepaare einsetzen und das entstehende Gleichungssystem lösen.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Normalparabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Di 20.09.2011
Autor: mathegenie84

Also ich habe dann [mm] f(x)=(x-x1)^2+y [/mm]
Einsetzten von P(2/4) und Q(-2/4) ergibt:

[mm] f(x)=(x-2)^2+4 [/mm] und
[mm] f(x)=(x+2)^2+4 [/mm]

und was mache ich dann???

Bezug
                                        
Bezug
Normalparabel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Di 20.09.2011
Autor: fred97


> Also ich habe dann [mm]f(x)=(x-x1)^2+y[/mm]
>  Einsetzten von P(2/4) und Q(-2/4) ergibt:
>  
> [mm]f(x)=(x-2)^2+4[/mm] und
>  [mm]f(x)=(x+2)^2+4[/mm]
>  
> und was mache ich dann???

Was hast Du denn gemacht ????


Du hast:  [mm]f(x)=(x-x_1)^2+y[/mm]

Aus 4=f(2) folgt:  

                     (1)   [mm] 4=(2-x_1)^2+y [/mm]

Aus 4=f(-2) folgt:  

                     (2)   [mm] 4=(-2-x_1)^2+y [/mm]

Aus (1) und (2) kannst Du nun [mm] x_1 [/mm] und y berechnen.


Aber: bei dieser Aufgabe muß man eigentlich gar nichts rechnen, wenn man erkennt, dass die Normalparabel [mm] f(x)=x^2 [/mm] durch die Punkte P und Q geht !

FRED

Bezug
        
Bezug
Normalparabel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Di 20.09.2011
Autor: chriwiloo

Also normalerweise müsste man 3 Bedingungen aufstellen, jedoch weiß ich nicht wie man das mit nur 2 gegebenen Punkten und ohne weitere Information anstellen soll.

Bezug
                
Bezug
Normalparabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:45 Di 20.09.2011
Autor: fred97


> Also normalerweise müsste man 3 Bedingungen aufstellen,
> jedoch weiß ich nicht wie man das mit nur 2 gegebenen
> Punkten und ohne weitere Information anstellen soll.

"verschobene Normalparabel" heißt: [mm] f(x)=x^2+px+q. [/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]