matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesNormalisierung, Standard Abwei
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Normalisierung, Standard Abwei
Normalisierung, Standard Abwei < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalisierung, Standard Abwei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Do 02.06.2016
Autor: studentxyz

Hi,


normalisierung mit der Standard Abweichung wenn alle Zahlen die betrachtet werden identisch sind, also z.B: 5,5,5,5,5

Dadurch das der Durchschnitt auch 5 ist, würde man unten im Beispiel:
[mm] (5-5)^2 [/mm] rechnen

Bei der Standard Abweichung hätte man dann;
sqrt(0), also 0 als "deviation"

und würde weiter unten am Ende durch  0 teilen.
Wie vermeidet man das?





Beispiel mit anderen Zahlen:
{-5, 6, 9, 2, 4}

Mean = (-5+6+9+2+4) / 5 = 3.2

Second, we subtract the mean from all the values and square them:

[mm] (-5-3.2)^2 [/mm] = 67.24
[mm] (6-3.2)^2 [/mm] = 7.84
[mm] (9-3.2)^2 [/mm] = 33.64
[mm] (2-3.2)^2 [/mm] = 1.44
[mm] (4-3.2)^2 [/mm] = 0.64

Then we find the deviation as follows:

Deviation = sqrt ((67.24 + 7.84 + 33.64 + 1.44 + 0.64) / 5) = 4.71

Now we normalize the attribute values:

x => (x - Mean) / Deviation

-5 => (-5 - 3.2) / 4.71 = -1.74

6 => (6 - 3.2) / 4.71 = 0.59

9 => (9 - 3.2) / 4.71 = 1.23

2 => (2 - 3.2) / 4.71 = -0.25

4 => (4 - 3.2) / 4.71 = 0.17
Quelle: http://www.d.umn.edu/~deoka001/Normalization.html

        
Bezug
Normalisierung, Standard Abwei: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Do 02.06.2016
Autor: luis52


> Hi,
>  
>
> normalisierung mit der Standard Abweichung wenn alle Zahlen
> die betrachtet werden identisch sind, also z.B: 5,5,5,5,5
>  
> Dadurch das der Durchschnitt auch 5 ist, würde man unten
> im Beispiel:
>  [mm](5-5)^2[/mm] rechnen
>  
> Bei der Standard Abweichung hätte man dann;
>  sqrt(0), also 0 als "deviation"
>  
> und würde weiter unten am Ende durch  0 teilen.
>  Wie vermeidet man das?
>  
>

Moin, gar nicht. In diesem Fall ist die Standardisierung nicht definiert. Standardisierung bedeutet: Transformation der Daten, so dass das arithmetische Mittel Null  und die Standardweichung Eins ist. Das erste klappt [mm] ($x_i-5$), [/mm] das zweite nicht, da die Standardabweichung der Ausgangszahlen Null ist, sie also keine Variabilitaet aufweisen. Standarbweichung Eins bedeutet: normierte Variabilitaet ($>0$).


Bezug
                
Bezug
Normalisierung, Standard Abwei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Do 02.06.2016
Autor: studentxyz

Danke für die schnelle Antwort

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]