matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenNormalgleichung in einem PKT
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Rationale Funktionen" - Normalgleichung in einem PKT
Normalgleichung in einem PKT < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalgleichung in einem PKT: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 12:48 Fr 04.01.2008
Autor: Milwes

Aufgabe
Bestimmen sie die Normalgleichung im Pkt B(1/yB): f(x)=(1/2 wurzel x)+(1/x²)

Wie bekomme ich yB raus. ich bedanke mich schon jetzt für eure antworten
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalgleichung in einem PKT: Hinweis
Status: (Antwort) fertig Status 
Datum: 13:23 Fr 04.01.2008
Autor: Roadrunner

Hallo Milwes!


Du meinste bestimmt die Normalengleichung (= Gerade, welche senkrecht auf die Tangente steht).

Verwende dafür folgende Formel:
[mm] $$y_n [/mm] \ = \ [mm] -\bruch{1}{f'(x_0)}*(x-x_0)+f(x_0)$$ [/mm]

Dabei ist [mm] $x_0 [/mm] \ = \ 1$ und [mm] $y_B [/mm] \ = \ [mm] f(x_0) [/mm] \ = \ f(1) \ = \ ...$ .


Gruß vom
Roadrunner


Bezug
                
Bezug
Normalgleichung in einem PKT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Fr 04.01.2008
Autor: Milwes

HMM... das ferstehe ich net wirklich... könntest du es nochmal für dumme erklären^^

Bezug
                        
Bezug
Normalgleichung in einem PKT: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Fr 04.01.2008
Autor: MontBlanc

Hallo,

[mm] f(x)=\bruch{1}{2}*\wurzel{x}+\bruch{1}{x^{2}} [/mm]

So, wie Roadrunner schoon geschrieben hat, kann man sich aus dem Differenzenquotienten (Steigung einer linearen Funktion) und einem Gleichungssystem aus 2 Gleichungen mit 2 Unbekannte eine allgemeine Gleichung für die Normale in einem Punkt aufstellen, die lautet so:

[mm] n(x)=\bruch{-1}{f'(x_{0})}*(x-x_{0})+f(x_{0}) [/mm]

[mm] f'(x_{0}) [/mm] ist die Ableitung an der Stelle [mm] x_{0} [/mm] also in deinem Fall an der Stelle 1 (x-Wert deines Punktes).
[mm] x_{0} [/mm] ist die Stelle 1 (wieder x-Wert deines Punktes)
[mm] f(x_{0}) [/mm] ist der Funktionswert an der Stelle [mm] x_{0} [/mm]

eingesetzt sieht das dann so aus:

[mm] n(x)=\bruch{-1}{f'(1)}*(x-1)+f(1) [/mm]

Kommst du jetzt alleine weiter?

Lg,

exeqter

Bezug
                                
Bezug
Normalgleichung in einem PKT: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Fr 04.01.2008
Autor: Milwes

jo, danke für deine schnelle antwort, so verdeutlicht ist das nun besser zu ferstehen, seit der Assistenen (FH-Reife) schule verstehe ich in Mathe nix mehr, mein lehrer versucht es zwar immer wieder aber es bringt nix direkt vor einer arbeit geht nix mehr... da is hole birne...     nun ma kucken wie es in der nächsten arbeit läuft... im falle das ich noch fragen hab melde ich mich,



DANKE AN ALLE DIE HIER SUUUUUUPPPEERR WEITERHELFEN

Bezug
                
Bezug
Normalgleichung in einem PKT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Fr 04.01.2008
Autor: Milwes

Woher hast du beispielsweiße die erste ableitung von f(x)? f(x) ist hier doch auch unbekannt, dann kann man doch keine ableitung davon nehmen... oder doch?
und dann noch warum dividiren durch f`(x)???

Bezug
                        
Bezug
Normalgleichung in einem PKT: Hinweise
Status: (Antwort) fertig Status 
Datum: 20:31 Fr 04.01.2008
Autor: Roadrunner

Hallo Milwes!


Die Funktion $f(x)_$ hast Du doch mit $ [mm] f(x)=\bruch{1}{2}\cdot{}\wurzel{x}+\bruch{1}{x^{2}} [/mm] $ gegeben. Von dieser musst Du nun die Ableitung $f'(x)_$ ermitteln.

Dass durch [mm] $f'(x_0)$ [/mm] dividiert wird, kommt aus der Eigenschaft, dass die Normale senkrecht auf die Tangente steht. Und damit gilt für die steigung [mm] $m_t$ [/mm] der Tangente und die Normalensteigung [mm] $m_n$ [/mm] :
[mm] $$m_t*m_n [/mm] \ = \ -1$$
[mm] $$m_n [/mm] \ = \ [mm] -\bruch{1}{m_t}$$ [/mm]

Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]