matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesNormalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Normalform
Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Di 26.06.2007
Autor: Engel205

Hallo ihr Lieben,
kann mir jemand helfen?
Wie finde ich für die Matrix

[mm] \bruch{1}{4} \pmat{ \wurzel{2}-2 & \wurzel{2}+2 & -2 \\ \wurzel{2}+2 & \wurzel{2}-2 & -2 \\ 2 & 2 & 2 \wurzel{2}} [/mm]

ein Matrix S aus O(3), sodass [mm] S^{-1}AS [/mm] Normalform hat?

Ich hoffe dass mir da jemand bei helfen kann.

Danke schonmal für jede Antwort!

        
Bezug
Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Di 26.06.2007
Autor: Somebody


> Hallo ihr Lieben,
>  kann mir jemand helfen?
> Wie finde ich für die Matrix
>
> [mm]\bruch{1}{4} \pmat{ \wurzel{2}-2 & \wurzel{2}+2 & -2 \\ \wurzel{2}+2 & \wurzel{2}-2 & -2 \\ 2 & 2 & 2 \wurzel{2}}[/mm]
>  
> ein Matrix S aus O(3), sodass [mm]S^{-1}AS[/mm] Normalform hat?

Um welche spezielle Art von Matrix handelt es sich denn? Und welche Art von "Normalform" schwebt Dir vor?

Falls sie z.B. orthogonal ist (ich hab's nicht kontrolliert: ich kann mich also täuschen), dann lässt sie sich orthogonal auf "Kästchenform" bringen. Kästchenform erhält man, wenn man sie auf eine Basis von Eigenvektoren und/oder zweidimensionalen invarianten Teilräumen transformiert. Im allgemeinen Falle würde man zuerst eine orthogonale Matrix als unitäre behandeln: dann gibt es eine Basis aus paarweise orthogonalen Eigenvektoren. Dann geht man zurück zum reellen Fall, indem man die Eigenvektoren zu je konjugiert komplexen Eigenwerten einen invarianten (nun wieder reellen) Teilraum aufspannen lässt.
Im 3-dimensionalen Falle kann man auch mehr "locker vom Hocker" vorgehen: Schau mal, welche Eigenwerte / Eigenvektoren Du findest. Dann hast Du schon mal einen Teil der gesuchten Basis, bezüglich der die Matrix auf Kästchenform gebracht wird. Eventuell bleibt dann ein 2-dimensionaler invarianter Teilraum, bezüglich dem die Matrix eine Drehung um einen gewissen Winkel ist.

Vielleicht hast Du ja in der Vorlesung was über die "Klassifikation der orthogonalen Abbildungen für die Dimensionen 1, 2, und 3" gehabt. In diesem Falle: siehe dort.


>  
> Ich hoffe dass mir da jemand bei helfen kann.
>  
> Danke schonmal für jede Antwort!


Bezug
                
Bezug
Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Mi 27.06.2007
Autor: Engel205

ja genau eine orthogonale Basis hab ich auch. Aber wie komm ich auf diese Kästchenschreibweise?
Das verstehe ich irgendwie nicht so ganz...

Bezug
                        
Bezug
Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Mi 27.06.2007
Autor: Somebody


> ja genau eine orthogonale Basis hab ich auch. Aber wie komm
> ich auf diese Kästchenschreibweise?

Eben: Du schaust zuerst, welche Eigenwerte die gegebene orthogonale Matrix hat. Die Eigenwerte [mm]\lambda[/mm] unitärer Matrizen haben (bekanntlich) den Betrag [mm]|\lambda| = 1[/mm]. Dies bedeutet: die reellen Eigenwerte können nur [mm]\pm 1[/mm] sein. Da die Matrix [mm]3\times 3[/mm] ist, ist das charakteristische Polynom vom dritten Grad, besitzt also notwendigerweise zumindest den reellen Eigenwert [mm]+1[/mm] (Fixgerade) oder [mm]-1[/mm] (Spiegelungsrichtung). Jenachdem wieviele reelle Eigenwerte und zugehörige Eigenvektoren Du findest, bist Du gleich fertig: dann bringt die Transformation auf diese Eigenvektoren als Basis die Matrix nicht nur auf Kästchenform, sondern diagonalisiert sie sogar.

Oder, wahrscheinlicherer Fall, Du findest nur einen einzigen rellen Eigenwert mit zugehörigem Eigenraum. Dann ist die Matrix bezüglich dem zu diesem Eigenraum orthogonal-komplementären 2-dim Teilraum eine Drehmatrix. Du wählst also einfach eine beliebige orthogonale Basis dieses zum 1-dim Eigenraum orthogonal-komplementären 2-dim Teilraumes und transformierst die gegebene orthogonale Matrix entsprechend. Dann sollte die transformierte Matrix, neben dem einen rellen Eigenwert in der Diagonalen, ein "Kästchen" (Drehmatrix) der Form:
[mm]\pmat{ \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) }[/mm]

besitzen. Sie sieht dann also insgesamt etwa so aus:
[mm]\pmat{\pm 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) }[/mm]



>  Das verstehe ich irgendwie nicht so ganz...

Warum fängst Du nicht einfach an zu rechnen, dann wird's vielleicht klarer.

Apropos "verstehen": Du kannst nicht erwarten, dass ich Dir den Text der Vorlesung oder Deines Lehrbuches zu diesem Thema hier geduldigst nochmals eintippse und tappse. Diesen Text hast Du sicher schon: lies ihn einfach nochmals. Ich beschränke mich hier auf die Angabe eines blossen Rezepts.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]