Normalenvektor Gerade < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:00 Mi 30.11.2011 | Autor: | Phil92 |
Hallo,
ich habe eine Gerade und eine Ebene gegeben [mm] (R^{3}), [/mm] bzw. deren Gleichungen ermitteln können. Ich habe auch bereits den Schnittpunkt, welcher sich bei (3/0/-0,5) befindet. Nun soll ich einen Vekrot finden, welcher orthogonal zur Geraden ist UND sich NUR in der Ebene befinden soll. Demnach muss der (orthogonale) Normalenvektor der Geraden ja im Schnittpunkt sein. Wie bestimme ich aber nun diesen Normalenvektor?
Geradengleichung = [mm] \vektor{1 \\ 1 \\ 1} [/mm] + [mm] s*\vektor{4 \\ -2 \\ -3}
[/mm]
Ebenengleichung (xz-Ebene) = [mm] \vektor{0 \\ 0 \\ 0} [/mm] + [mm] t*\vektor{1 \\ 0 \\ 0} [/mm] + [mm] u*\vektor{0 \\ 0 \\ 1}
[/mm]
Schnittpunkt = [mm] \vektor{3 \\ 0 \\ -0,5}
[/mm]
Ich habe einfach ein Brett vorm Kopf. Die Lösung ist bestimmt mit einer einzigen Antwort zu klären, aber ich komm einfach nicht drauf.
Danke.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:07 Mi 30.11.2011 | Autor: | chrisno |
Es gibt viele Lösungen, weil die Länge des Vektors nicht festgelegt ist.
Alle Vektoren [mm]\vektor{x \\ 0 \\ z}[/mm] liegen in der Ebene.
Also bildest Du das Skalarprodukt dieses Vektors mit dem Richtungsvektor der Geraden [mm]\vektor{4 \\ -2 \\ -3}[/mm]. Das muss 0 sein. Damit sind x und z noch nicht festgelegt. Als nächstes wählst Du einen dir passenden Wert für x oder z, wobei Du lieber nicht 0 nehmen solltest, wenn Du nicht weißt, welchen Wert, dann nimm 1. Dann rechnest Du die fehlende Koordinate aus.
|
|
|
|