matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikNormalengleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - Normalengleichung
Normalengleichung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalengleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:09 So 20.05.2012
Autor: Katthi

Aufgabe
Transformieren Sie die Normalengleichung zu Aufgabe 4 mit Ihrer QR-
Zerlegung auf Dreiecksgestalt und lösen Sie es durch Rückwärtseinsetzen
(d.h. ohne den Backslash-Operator). (mit Matlab zu lösen)


Hallo Leute,

ich habe keine Ahnung, wie ich diese Aufgabe angehen soll.
In der erwähnten Aufgabe sollten wir die reduzierte QR-Zerlegung für ein überbestimmtes Gleichungssystem aufstellen.
Aber wie transfomiere ich damit dir Normalengleichung auf Dreiecksgestalt?
Die Gleichung besagt ja: [mm] A^T*A*x [/mm] = [mm] A^T*b [/mm]
ich könnte ja dann Q*R für A einsetzen, aber wie gibt mir Matlab eine Dreiecksgestalt und wie setze ich dann Rückwärts ein ohne den Backslash-Operator??

Ich hoffe ihr habt eine Idee.

Viele Grüße,
Katthi

        
Bezug
Normalengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 So 20.05.2012
Autor: logipech

Ich stelle mir zur Zeit die gleiche Frage und teile mal meine Gedanken dazu mit:
Setzt man für $A^TAx=A^Tb$ die Matrizen $Q$ und $R$ ein, so erhält man auf der linken Seite $R^TR$. $R$ ist eine Diagonalmatrix (in diesem speziellen Fall) und somit ist auch $R^TR$ eine Diagonalmatrix, bzw. insb. eine Dreiecksmatrix.
Dann muss man auch nicht mit dem Backslash-Operator aus Matlab eine Lösung berechnen, sondern es reicht ein paar Koeffizienten zu kürzen.
Stutzig macht mich, dass von "Rückwärtseinsetzen" die Rede ist und, dass man sich die Matrix R genau anschauen muss, d.h. i.A. ist es nicht so lösbar.

Eine Idee habe ich dazu noch:
Matlab "löst" auch nicht lösbare LGS. Hier soll betont werden, dass $R^TR=A^Hx$ eindeutig lösbar ist, da R bei uns vollen Rang hat.
Wir hatten auch den Satz, dass die reduzierte QR-Darstellung ex., wenn A vollen Rang hat und dann muss auch R vollen Rang haben.

Bezug
                
Bezug
Normalengleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:28 Mo 21.05.2012
Autor: Katthi

Hey,

also das mit dem Einsetzen habe ich mir ja auch gedacht, aber wie bekomme ich die reine Transformation der Normalengleichung dann? ich denke, dass wir diese Dreiecksgestalt irgendwo ja auch anschaubar machen müssen, denn sonst könnte man ja direkt mit dem qr_gram_schmidt die Lösung bestimmen.
D.h. ich möchte doch soetwas haben wie: C*x = d, wobei C irgendeine Dreiecksmatrix ist, die sich aus Q und R zusammensetzt?!
Und naja das mit dem Rückwärtseinsetzen weiß ich auch garnicht in Matlab umzusetzen. :(

Vielleicht hast du ja mittlerweile schon eine neue Idee zur Umsetzung.

Viele Grüße
Katthi

Bezug
                        
Bezug
Normalengleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 24.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Normalengleichung: vielleicht so?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 Mo 21.05.2012
Autor: wieschoo

Wenn du [mm]A^TA=:M[/mm] und [mm]A^Tb=:c[/mm] definierst. Dann hast du das LGS

Mx=c und somit auch [mm]Rx=Q^Tc[/mm] also [mm]\blue{Rx=d}[/mm] mit [mm]d=Q^Tc[/mm]. Damit hast du die Dreiecksgestalt und darfst rückwärst einsetzen.

Das Rückwärtseinsetzen kann man durch eine Schleife programmieren.

Bezug
                
Bezug
Normalengleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:12 Mo 21.05.2012
Autor: Katthi

Hey,

achso :D Dankeschön.  Die Schleife habe ich auch schon.
nur bleibt noch eine Frage und zwar habe ich die Matrizen Q und R bereits durch eine function qr_gram_schmidt berechnet. Wie kann ich denn dann auf dieses Q und dieses R zugreifen für die neue function rueck_einsetzen ?
Da muss ich ja als Input dann R und d eingeben, wobei dann d = [mm] Q^T*b [/mm] ist aber wenn ich Q und d einsetze, wobei ich d durch eine eigene function gespeichert habe, sagt der mir, dass er R und Q nicht kennt.
habe das auch schon mit save/load probiert. Wenn ich im command window dann Q oder R eingebe, gibt der mir die richtig aus, sobald ich dann aber wieder mein d berechnen lassen will, so sagt der wieder, dass er Q nicht kennt.

Viele Grüße,
Katthi

Bezug
                        
Bezug
Normalengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Mo 21.05.2012
Autor: Katthi

oh man irgendwie passt da garnichts von den Dimensionen. =(
Meine QR-Zerlegung durch das Gram-Schmidt-Verfahren liefert mir ja quasi die reduzierte QR-Zerlegung. Ist da irgendwie der Fehler, dass ich bei der Normalengleichung die komplette brauche?
hab das Verfahren auch schon umgeschrieben, aber es passt vorne und hinten nicht.

Ich hoffe ihr habt noch eine Idee...

Grüße,
Katthi

Bezug
                                
Bezug
Normalengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Mo 21.05.2012
Autor: Katthi

klappt doch alles =)

Aber danke für die Hilfe!!

Viele Grüße,
Katthi

Bezug
                                
Bezug
Normalengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Mo 21.05.2012
Autor: logipech

Ich möchte nochmals darauf eingehen, was ich oben geschrieben habe:
In der Aufgabenstellung ist ja die Rede von der Normalengleichung in Dreiecksform, d.h. $A^TAx=A^Tb$. Deshalb habe ich mich auch nur auf diese Gleichung in der Programmieraufgabe bezogen.
In Aufg.4 habe ich es entsprechend mit $Ax=b$ gelöst.
Es gilt also [mm] $A^TAx=(QR)^T [/mm] (QR)x=R^TQ^TQRx=R^TRx$ und, da $R$ Diagonalmatrix ist folgt mit $D:=R^TR$ (Diagonalmatrix), dass $Dx=A^Tb=:c$ Dreiecksform hat.

Zum Programmierteil kann man schwer etwas sagen, ohne den Quellcode zu sehen. Im Prinzip sollte es aber so funktionieren, wie es in der Vorlesung aufgeschrieben wurde:
function [Q,R] = qr_gram_schmidt(A)
      ...
end
Diese Funktion ruft man dann aus einer anderen Scriptdatei auf mit
[Q,R]=qr_gram_schmidt(A);
Und dann sollten die Matrizen fortan zur Verfügung stehen.

Bezug
                        
Bezug
Normalengleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 24.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Normalengleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 23.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]