matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNormale-Beweisaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Normale-Beweisaufgabe
Normale-Beweisaufgabe < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normale-Beweisaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 So 19.10.2008
Autor: Theoretix

Aufgabe
Gegeben ist die Funktion f mit f(x)= [mm] \wurzel{25-x^{2}} [/mm]
Zeigen Sie, dass die Normale in einem beliebigen Punkt P(a/f(a)) durch den Ursprung geht!


Hallo zusammen,
Man weiß ja, dass die Normalensteigung:
[mm] -\bruch{1}{f '(x)} [/mm] ist!?
Jetzt weiß ich aber nicht mehr genau wie man diesen Term ableitet!?
Wie lässt sich der beliebig gewählte Punkt ausdrücken und warum?
Dann müsste ich den x/y Wert des Punktes in Y=mx+c einsetzen uns sollte für c 0 rausbekommen,
aber der Weg dorthin ist mir noch nicht so ganz klar=)
Wär nett, wenn mir schnell jemand helfen könnte!
MFG

        
Bezug
Normale-Beweisaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 So 19.10.2008
Autor: Adamantin


> Gegeben ist die Funktion f mit f(x)= [mm]\wurzel{25-x^{2}}[/mm]
>  Zeigen Sie, dass die Normale in einem beliebigen Punkt
> P(a/f(a)) durch den Ursprung geht!
>  
>
> Hallo zusammen,
>  Man weiß ja, dass die Normalensteigung:
>  [mm]-\bruch{1}{f '(x)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

ist!?

>  Jetzt weiß ich aber nicht mehr genau wie man diesen Term
> ableitet!?
>  Wie lässt sich der beliebig gewählte Punkt ausdrücken und
> warum?
>  Dann müsste ich den x/y Wert des Punktes in Y=mx+c
> einsetzen uns sollte für c 0 rausbekommen,
>  aber der Weg dorthin ist mir noch nicht so ganz klar=)
>  Wär nett, wenn mir schnell jemand helfen könnte!
>  MFG

Zur Ableitung:

$ f(x)=\wurzel{25-x^{2}}=(25-x^2)^{\bruch{1}{2}} $

$ f'(x)=\bruch{1}{2}*(25-x^2)^{-\bruch{1}{2}}*(-2x)=-\bruch{x}{\wurzel{25-x^2} $

Damit ergibt sich für die Steigung m_n der normalen:

$ m_n=-\bruch{1}{f '(x)}=-\bruch{1}{-\bruch{x}{\wurzel{25-x^2}}}=+\bruch{\wurzel{25-x^2}}{x} $

Nun haben wir also die Normalengleichung:

$ n(x)=\bruch{\wurzel{25-x^2}}{x}*x+b $

Nun setzen wir den geforderten beliebigen Punkt $ P(a/f(a)) = P(a/ \wurzel{25-a^2}) $ ein:

$ n(a)=\bruch{\wurzel{25-a^2}}{a}*a+b= \wurzel{25-a^2} $

Daraus folgt: b=0

Damit geht n(x) durch O

Bezug
                
Bezug
Normale-Beweisaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 So 19.10.2008
Autor: Theoretix

Vielen Dank für die schnelle Antwort, hab's jetzt verstanden=)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]