matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraNormalbasis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Normalbasis
Normalbasis < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalbasis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:57 Sa 20.06.2009
Autor: bobby

Hallo,

ich habe diese Aufgabe in Vorbereitung auf meine Klausur begonnen, bräuchte dabei aber mal etwas Hilfe, ich komm damit nicht zurecht...

Sei K Zerfällungskörper von [mm] x^{3}+x+1 \in \IZ_{2}[x] [/mm] und a [mm] \in [/mm] K Nullstelle von [mm] x^{3}+x+1. [/mm]
Liefert a eine Normalbasis von [mm] \IZ_{2}(a):\IZ_{2}? [/mm]

Also sonst habe ich immer konkret eine Nullstelle von einem Polynom bestimmen können und dann die Galoisgruppe bestimmt und die Normalbasis über die Anwendung der Automorphismen aus der Galoisgruppe bestimmt, aber hier mit dem a komm ich damit irgendwie nicht weiter...

Hat jemand von euch eine Idee dazu??

        
Bezug
Normalbasis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 Mi 24.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Normalbasis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 Mi 24.06.2009
Autor: felixf

Hallo

> ich habe diese Aufgabe in Vorbereitung auf meine Klausur
> begonnen, bräuchte dabei aber mal etwas Hilfe, ich komm
> damit nicht zurecht...
>  
> Sei K Zerfällungskörper von [mm]x^{3}+x+1 \in \IZ_{2}[x][/mm] und a
> [mm]\in[/mm] K Nullstelle von [mm]x^{3}+x+1.[/mm]
>  Liefert a eine Normalbasis von [mm]\IZ_{2}(a):\IZ_{2}?[/mm]
>  
> Also sonst habe ich immer konkret eine Nullstelle von einem
> Polynom bestimmen können und dann die Galoisgruppe bestimmt
> und die Normalbasis über die Anwendung der Automorphismen
> aus der Galoisgruppe bestimmt, aber hier mit dem a komm ich
> damit irgendwie nicht weiter...

Hier geht es um endliche Koerper; die Galoisgruppe ist also [mm] $\IZ/3\IZ$ [/mm] und wird vom Frobenius-Endomorphismus $x [mm] \mapsto x^2$ [/mm] erzeugt. Die Behauptung ist also, dass $a, [mm] a^2, a^4$ [/mm] eine Basis ist.

Hier kannst du jetzt [mm] $a^4 [/mm] = a [mm] \cdot a^3 [/mm] = a [mm] \cdot [/mm] (-a - 1) = a [mm] \cdot [/mm] (a + 1) = [mm] a^2 [/mm] + a$ schreiben (da $-1 = 1$ in [mm] $\IZ_2$). [/mm]

Du sollst jetzt also zeigen, ob $a$, [mm] $a^2$ [/mm] und $a + [mm] a^2$ [/mm] zusammen eine [mm] $\IZ_2$-Basis [/mm] von [mm] $\IZ_2(a)$ [/mm] bilden. Ist dies so?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]