matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungNormal-/Binomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Normal-/Binomialverteilung
Normal-/Binomialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normal-/Binomialverteilung: Abgrenzung/Anwendung
Status: (Frage) überfällig Status 
Datum: 12:53 Mo 11.11.2013
Autor: fth77

Hallo Community,

zwar bin ich kein Schüler (mehr), jedoch möchte ich gern verstehen, wann/warum/wie man die Binomial- von der Normal- oder Standardnormalverteilung abgrenzt, woran man (in Aufgabenstellungen, in denen nicht explizit die eine oder andere Verteilung gefordert ist) sie erkennt und wie man sie berechnet. Die Binomialverteilung (inklusive damit zu berechnender Intervalle und Sigma-Regeln, Konfidenzintervalle etc.) ist mir geläufig, ebenso die dazu verwendbaren CAS-Befehle und/oder Programme auf üblichen Schul-TR (TI Voyage bzw. CASIO fx...).

Wenn ich es richtig verstanden habe, wird die Normalverteilung eigentlich nur zur Annäherung verwendet.
a) Immer (?) dann, wenn n*p*q>9 ist? Woran entscheide ich, falls n gesucht und k gegeben ist? Man könnte annehmen, dass n*p*q ebenfalls größer als 9 ist, wenn bereits k*p*q dieses Kriterium erfüllt. Was, wenn k genügend klein ist, dass dieses Produkt nicht 9 oder größer wird?
b) Außerdem ist als Auswahlkriterium oft von "großem n" die Rede - ab wann ist n groß genug?
c) Heißt "Annäherung der NV an die BV", dass die Binomialverteilung eigentlich das genauere Instrument wäre? Soweit ich das als Laie bzgl. dahintersteckender Programmierung überblicke, lässt mein TR-Befehl beim TI Voyage auch drei- oder vierstellige n bei der Berechnung zu. Warum/wann sollte ich dann davon abweichen und die NV nutzen?

Ein kleines, scheinbar schon des Öfteren angeführtes Beispiel: Zum Befestigen einer Holzdecke benötigt ein Heimwerker 72 Nägel, die in 20er-Packungen verkauft werden. Aus Erfahrung weiß er, dass er durchschnittlich jeden sechsten Nagel beim Einschlagen verbiegt, womit dieser unbrauchbar wird. Wie viele Packungen muss er kaufen, damit die Nägel mit mind. 98-%-iger Wahrscheinlichkeit ausreichen?

Für mich eine klassische Binomialverteilung, da es zwei unterscheidbare Zustände (gerade/krumm bzw. brauchbar/unbrauchbar) gibt und die Wahrscheinlichkeit (unveränderlich) jeweils 5/6 bzw. 1/6 beträgt.
BV mit [mm] k\ge72 [/mm], [mm] p=\bruch{5}{6} [/mm] und [mm] P\ge0,98 [/mm] ... mittels TI-Befehl komme ich hier auf [mm] n\ge96 [/mm], da bei n=96 die Wahrscheinlichkeit mit rund 98,7% erstmals oberhalb der geforderten 98 % liegt. Demzufolge müsste der Heimwerker 5 der 20-er-Packungen kaufen.

Mit (ersatzweise) k=72 (und demzufolge [mm] n\ge72 [/mm]) sowie p und q käme man auf eine Standardabweichung von mindestens [mm] \sqrt{10} [/mm], womit auch die Normalverteilung nutzbar wäre. Ab hier würde ich gern meine Lücken füllen :)
d) Welche Formel(n) muss ich jetzt nutzen?
e) Wann und wie erfolgt die Stetigkeitskorrektur, woran erkenne ich, ob dies nötig ist?
f) Worin liegt der Unterschied zwischen der Normal- und der Standardnormalverteilung, wann wird was benutzt?
g) Welche Befehle gibt es dafür beim TI Voyage oder TI-89?

Für eure ausführlichen Antworten wäre ich sehr dankbar, da die mir vorliegende Literatur entweder keine oder nur hochwissenschaftlich unverständliche Hinweise bietet. Ich bin zwar nicht auf den Kopf gefallen, aber würde es gern mit einfachen Worten erklärt bekommen ;)
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=531219
http://www.onlinemathe.de/forum/AbgrenzungAnwendung-Normal-Standardnormal-Binom
http://www.gute-mathe-fragen.de/63336/abgrenzung-anwendung-normal-standardnormal-binomialverteilu
würde mich aber auch hier über Antworten freuen.

        
Bezug
Normal-/Binomialverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 14.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]