matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisNormäquivalenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Normäquivalenz
Normäquivalenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normäquivalenz: Frage
Status: (Frage) beantwortet Status 
Datum: 19:22 Di 17.05.2005
Autor: mathmetzsch

Hallo, ich habe mal wieder Problemchen mit den Normen. Auf dem  [mm] \IR^n [/mm] sind ja alle Normen äquivalent. Die Aufgabe ist nun für die folg. Normen die kleinsten Konstanten zu finden und das zu beweisen.

Zeigen Sie, dass die Normen [mm] ||*||_{1} [/mm] , [mm] ||*||_{2} [/mm] und [mm] ||*||_{\infty} [/mm] äquivalent sind, indem sie für alle i,j [mm] \in{1,2,\infty} [/mm] die kleinsten Konstanten [mm] c_{i,j} [/mm] finden (mit Beweis), für die gilt:
[mm] ||*||_{i} \le c_{i,j}||*||_{j}. [/mm]      Für alle [mm] x\in \IR^n [/mm]

Ich habe in einem Buch gelesen, dass sich beispielsweise die euklidische Norm und die Maximumsnorm so abschätzen lassen:
[mm] ||*||_{2} \le\wurzel{n}*||*||_{\infty}. [/mm]

Wie kommt man aber darauf? Danke für eure Hilfe!
Grüße mathmetzsch

        
Bezug
Normäquivalenz: Tipp
Status: (Antwort) fertig Status 
Datum: 19:49 Di 17.05.2005
Autor: Max

Hallo mathmetzsch,

die Abschätzungen sollten dir leichter fallen, wenn du dir evtl. mal die Kreisscheibe mit [mm] $||x||_i\le [/mm] 1$ in den entsprechenden Normen aufmalen (wie süss ;-)) - dann könntest du vielleicht schneller auf die gesuchten Konstanten kommen...

Ansonsten einfach die Definition der entsprechenden Normen nehmen und so abschätzen, dass du die KOónstante abschätzen kannst.

Max

Bezug
                
Bezug
Normäquivalenz: Antwort
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 17.05.2005
Autor: mathmetzsch

Könntest du das dann vielleicht mal für das Beispiel, das ich gebracht habe machen? Ich verstehe nicht, wie man Wurzel n kommt.

Danke

Bezug
                        
Bezug
Normäquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Di 17.05.2005
Autor: Max

Hallo mathmatzsch,

musst du auch erstmal nicht, betrachte zunächst mal die zweidimensionale Sitution und mal dir dort die Einheits"kreise" unter den entsprechenden Normen auf. Wenn du dort verstanden hast, wie man zwischen den Normen umrechnet, wird dir sicher die Verallgemeinerung durch die Formeln gelingen.

Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]