matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenNorm von exp?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - Norm von exp?
Norm von exp? < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Norm von exp?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mo 14.03.2011
Autor: T_sleeper

Aufgabe
Das Anfangswertproblem [mm] u_{t}=P(D)u [/mm] mit [mm] u_{0}=u(\cdot,0) [/mm] heißt korrekt gestellt, wenn es Konstanten [mm] K>0,\alpha\in\mathbb{R} [/mm] gibt, mit

[mm] |e^{tP(iy)}|\leq Ke^{\alpha t} [/mm] für alle [mm] t\geq0,y\in\mathbb{R}^{n}. [/mm]

Dabei bezeichnet [mm] P(iy)=\sum_{|\alpha|\leq k}A_{\alpha}(iy)^{\alpha} [/mm] mit Matrizen [mm] A_{\alpha}\in\mathbb{C}^{m\times m}. [/mm]

Was bedeutet hier [mm] |e^{tP(iy)}|? [/mm]

Hallo,

also mir wird aus der Definition nicht ersichtlich, was die “Betragsstriche” da bedeuten. Soll das die Determinante sein oder irgendeine bestimmte Norm?

In einem Beispiel, das mir vorliegt, wird das Ganze folgendermaßen gemacht:

Betrachte: [mm] u_{t}=\begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix}u_{x}-u. [/mm]

Dann ist [mm] A_{0}=-I_{2} [/mm] (Identität) und [mm] A_{1}=\begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix}, [/mm] also gilt [mm] P(iy)=iyA_{1}-I_{2}. [/mm]

Demnach: [mm] e^{tP(iy)}=\exp((-t+ity)I_{2}+iyt\begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix})=\exp(t(-1+iy))\exp(iyt\begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix}) [/mm]

[mm] =e^{t(-1+iy)}\begin{pmatrix}1 & iyt\\ 0 & 1\end{pmatrix}. [/mm]

Die Rechenschritte sind ja alle klar. Jetzt kommts:

[mm] |e^{tP(iy)}|=e^{-t}\left|\begin{pmatrix}1 & iyt\\ 0 & 1\end{pmatrix}\right|. [/mm] An dieser Stelle kommt bei mir die Frage auf, wieso denn [mm] |e^{tiy}|=1 [/mm] sein soll??

Dann wird gefolgert:

[mm] e^{-t}|yt|\leq|e^{tP(iy)}|\leq e^{-t}(1+|yt|). [/mm] Das kann ich auch nicht sehen. Wenn [mm] |\cdot| [/mm] wirklich die Determinante sein sollte, dann müsste das doch immer [mm] \leq e^{-t} [/mm] sein, damit stimmt auf jeden Fall die rechte Seite. Aber wieso sollte die linke gelten?

        
Bezug
Norm von exp?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Mo 14.03.2011
Autor: MathePower

Hallo T_sleeper,

> Das Anfangswertproblem [mm]u_{t}=P(D)u[/mm] mit [mm]u_{0}=u(\cdot,0)[/mm]
> heißt korrekt gestellt, wenn es Konstanten
> [mm]K>0,\alpha\in\mathbb{R}[/mm] gibt, mit
>
> [mm]|e^{tP(iy)}|\leq Ke^{\alpha t}[/mm] für alle
> [mm]t\geq0,y\in\mathbb{R}^{n}.[/mm]
>  
> Dabei bezeichnet [mm]P(iy)=\sum_{|\alpha|\leq k}A_{\alpha}(iy)^{\alpha}[/mm]
> mit Matrizen [mm]A_{\alpha}\in\mathbb{C}^{m\times m}.[/mm]
>  
> Was bedeutet hier [mm]|e^{tP(iy)}|?[/mm]
>  Hallo,
>  
> also mir wird aus der Definition nicht ersichtlich, was die
> “Betragsstriche” da bedeuten. Soll das die Determinante
> sein oder irgendeine bestimmte Norm?
>
> In einem Beispiel, das mir vorliegt, wird das Ganze
> folgendermaßen gemacht:
>  
> Betrachte: [mm]u_{t}=\begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix}u_{x}-u.[/mm]
>  
> Dann ist [mm]A_{0}=-I_{2}[/mm] (Identität) und
> [mm]A_{1}=\begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix},[/mm] also gilt
> [mm]P(iy)=iyA_{1}-I_{2}.[/mm]
>  
> Demnach: [mm]e^{tP(iy)}=\exp((-t+ity)I_{2}+iyt\begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix})=\exp(t(-1+iy))\exp(iyt\begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix})[/mm]
>  
> [mm]=e^{t(-1+iy)}\begin{pmatrix}1 & iyt\\ 0 & 1\end{pmatrix}.[/mm]
>  
> Die Rechenschritte sind ja alle klar. Jetzt kommts:
>  
> [mm]|e^{tP(iy)}|=e^{-t}\left|\begin{pmatrix}1 & iyt\\ 0 & 1\end{pmatrix}\right|.[/mm]
> An dieser Stelle kommt bei mir die Frage auf, wieso denn
> [mm]|e^{tiy}|=1[/mm] sein soll??


[mm]e^{t*i*y}[/mm] ist eine komplexe Zahl.

Gemäß der Eulerschen Identität gilt:

[mm]e^{t*i*y}=\cos\left(t*y \right)+i*\sin\left(t*y \right)[/mm]

Der Betrag dieser komplexen Zahl ist 1


>  
> Dann wird gefolgert:
>  
> [mm]e^{-t}|yt|\leq|e^{tP(iy)}|\leq e^{-t}(1+|yt|).[/mm] Das kann ich
> auch nicht sehen. Wenn [mm]|\cdot|[/mm] wirklich die Determinante
> sein sollte, dann müsste das doch immer [mm]\leq e^{-t}[/mm] sein,
> damit stimmt auf jeden Fall die rechte Seite. Aber wieso
> sollte die linke gelten?


Nein, das ist nicht die Determinante.

Vielmehr ist [mm]\vmat{ \ \ }[/mm] hier die Spalten- bzw. Zeilensummennorm.


Gruss
MathePower

Bezug
                
Bezug
Norm von exp?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Mo 14.03.2011
Autor: T_sleeper


> Hallo T_sleeper,
>  
> > Das Anfangswertproblem [mm]u_{t}=P(D)u[/mm] mit [mm]u_{0}=u(\cdot,0)[/mm]
> > heißt korrekt gestellt, wenn es Konstanten
> > [mm]K>0,\alpha\in\mathbb{R}[/mm] gibt, mit
> >
> > [mm]|e^{tP(iy)}|\leq Ke^{\alpha t}[/mm] für alle
> > [mm]t\geq0,y\in\mathbb{R}^{n}.[/mm]
>  >  
> > Dabei bezeichnet [mm]P(iy)=\sum_{|\alpha|\leq k}A_{\alpha}(iy)^{\alpha}[/mm]
> > mit Matrizen [mm]A_{\alpha}\in\mathbb{C}^{m\times m}.[/mm]
>  >  
> > Was bedeutet hier [mm]|e^{tP(iy)}|?[/mm]
>  >  Hallo,
>  >  
> > also mir wird aus der Definition nicht ersichtlich, was die
> > “Betragsstriche” da bedeuten. Soll das die Determinante
> > sein oder irgendeine bestimmte Norm?
> >
> > In einem Beispiel, das mir vorliegt, wird das Ganze
> > folgendermaßen gemacht:
>  >  
> > Betrachte: [mm]u_{t}=\begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix}u_{x}-u.[/mm]
>  
> >  

> > Dann ist [mm]A_{0}=-I_{2}[/mm] (Identität) und
> > [mm]A_{1}=\begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix},[/mm] also
> gilt
> > [mm]P(iy)=iyA_{1}-I_{2}.[/mm]
>  >  
> > Demnach: [mm]e^{tP(iy)}=\exp((-t+ity)I_{2}+iyt\begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix})=\exp(t(-1+iy))\exp(iyt\begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix})[/mm]
>  
> >  

> > [mm]=e^{t(-1+iy)}\begin{pmatrix}1 & iyt\\ 0 & 1\end{pmatrix}.[/mm]
>  
> >  

> > Die Rechenschritte sind ja alle klar. Jetzt kommts:
>  >  
> > [mm]|e^{tP(iy)}|=e^{-t}\left|\begin{pmatrix}1 & iyt\\ 0 & 1\end{pmatrix}\right|.[/mm]
> > An dieser Stelle kommt bei mir die Frage auf, wieso denn
> > [mm]|e^{tiy}|=1[/mm] sein soll??
>  
>
> [mm]e^{t*i*y}[/mm] ist eine komplexe Zahl.
>  
> Gemäß der Eulerschen Identität gilt:
>  
> [mm]e^{t*i*y}=\cos\left(t*y \right)+i*\sin\left(t*y \right)[/mm]
>  
> Der Betrag dieser komplexen Zahl ist 1
>  
>
> >  

> > Dann wird gefolgert:
>  >  
> > [mm]e^{-t}|yt|\leq|e^{tP(iy)}|\leq e^{-t}(1+|yt|).[/mm] Das kann ich
> > auch nicht sehen. Wenn [mm]|\cdot|[/mm] wirklich die Determinante
> > sein sollte, dann müsste das doch immer [mm]\leq e^{-t}[/mm] sein,
> > damit stimmt auf jeden Fall die rechte Seite. Aber wieso
> > sollte die linke gelten?
>
>
> Nein, das ist nicht die Determinante.
>  
> Vielmehr ist [mm]\vmat{ \ \ }[/mm] hier die Spalten- bzw.
> Zeilensummennorm.

Ok vielen Dank schonmal. Wie sieht denn  diese Norm aus? Ich hab danach gesucht und nicht wirklich eine Definition gefunden.

>
> Gruss
>  MathePower


Bezug
                        
Bezug
Norm von exp?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Mo 14.03.2011
Autor: MathePower

Hallo T_sleeper,

> > >  

> > > Dann wird gefolgert:
>  >  >  
> > > [mm]e^{-t}|yt|\leq|e^{tP(iy)}|\leq e^{-t}(1+|yt|).[/mm] Das kann ich
> > > auch nicht sehen. Wenn [mm]|\cdot|[/mm] wirklich die Determinante
> > > sein sollte, dann müsste das doch immer [mm]\leq e^{-t}[/mm] sein,
> > > damit stimmt auf jeden Fall die rechte Seite. Aber wieso
> > > sollte die linke gelten?
> >
> >
> > Nein, das ist nicht die Determinante.
>  >  
> > Vielmehr ist [mm]\vmat{ \ \ }[/mm] hier die Spalten- bzw.
> > Zeilensummennorm.
>  
> Ok vielen Dank schonmal. Wie sieht denn  diese Norm aus?
> Ich hab danach gesucht und nicht wirklich eine Definition
> gefunden.


Guckst Du hier: []Matrixnorm


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]